gtsam/tests/testNonlinearEqualityConstr...

376 lines
13 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testNonlinearEqualityConstraint.cpp
* @author Alex Cunningham
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/slam/simulated2DConstraints.h>
#include <gtsam/slam/visualSLAM.h>
#include <gtsam/nonlinear/NonlinearFactorGraph-inl.h>
#include <gtsam/nonlinear/NonlinearOptimizer-inl.h>
namespace eq2D = gtsam::simulated2D::equality_constraints;
using namespace std;
using namespace gtsam;
static const double tol = 1e-5;
SharedDiagonal hard_model = noiseModel::Constrained::All(2);
SharedDiagonal soft_model = noiseModel::Isotropic::Sigma(2, 1.0);
typedef NonlinearFactorGraph<simulated2D::Values> Graph;
typedef boost::shared_ptr<Graph> shared_graph;
typedef boost::shared_ptr<simulated2D::Values> shared_values;
typedef NonlinearOptimizer<Graph, simulated2D::Values> Optimizer;
/* ************************************************************************* */
TEST( testNonlinearEqualityConstraint, unary_basics ) {
Point2 pt(1.0, 2.0);
simulated2D::PoseKey key(1);
double mu = 1000.0;
eq2D::UnaryEqualityConstraint constraint(pt, key, mu);
simulated2D::Values config1;
config1.insert(key, pt);
EXPECT(constraint.active(config1));
EXPECT(assert_equal(zero(2), constraint.evaluateError(pt), tol));
EXPECT(assert_equal(zero(2), constraint.unwhitenedError(config1), tol));
EXPECT_DOUBLES_EQUAL(0.0, constraint.error(config1), tol);
simulated2D::Values config2;
Point2 ptBad1(2.0, 2.0);
config2.insert(key, ptBad1);
EXPECT(constraint.active(config2));
EXPECT(assert_equal(Vector_(2, 1.0, 0.0), constraint.evaluateError(ptBad1), tol));
EXPECT(assert_equal(Vector_(2, 1.0, 0.0), constraint.unwhitenedError(config2), tol));
EXPECT_DOUBLES_EQUAL(500.0, constraint.error(config2), tol);
}
/* ************************************************************************* */
TEST( testNonlinearEqualityConstraint, unary_linearization ) {
Point2 pt(1.0, 2.0);
simulated2D::PoseKey key(1);
double mu = 1000.0;
Ordering ordering;
ordering += key;
eq2D::UnaryEqualityConstraint constraint(pt, key, mu);
simulated2D::Values config1;
config1.insert(key, pt);
GaussianFactor::shared_ptr actual1 = constraint.linearize(config1, ordering);
GaussianFactor::shared_ptr expected1(new JacobianFactor(ordering[key], eye(2,2), zero(2), hard_model));
EXPECT(assert_equal(*expected1, *actual1, tol));
simulated2D::Values config2;
Point2 ptBad(2.0, 2.0);
config2.insert(key, ptBad);
GaussianFactor::shared_ptr actual2 = constraint.linearize(config2, ordering);
GaussianFactor::shared_ptr expected2(new JacobianFactor(ordering[key], eye(2,2), Vector_(2,-1.0,0.0), hard_model));
EXPECT(assert_equal(*expected2, *actual2, tol));
}
/* ************************************************************************* */
TEST( testNonlinearEqualityConstraint, unary_simple_optimization ) {
// create a single-node graph with a soft and hard constraint to
// ensure that the hard constraint overrides the soft constraint
Point2 truth_pt(1.0, 2.0);
simulated2D::PoseKey key(1);
double mu = 10.0;
eq2D::UnaryEqualityConstraint::shared_ptr constraint(
new eq2D::UnaryEqualityConstraint(truth_pt, key, mu));
Point2 badPt(100.0, -200.0);
simulated2D::Prior::shared_ptr factor(
new simulated2D::Prior(badPt, soft_model, key));
shared_graph graph(new Graph());
graph->push_back(constraint);
graph->push_back(factor);
shared_values initValues(new simulated2D::Values());
initValues->insert(key, badPt);
// verify error values
EXPECT(constraint->active(*initValues));
simulated2D::Values expected;
expected.insert(key, truth_pt);
EXPECT(constraint->active(expected));
EXPECT_DOUBLES_EQUAL(0.0, constraint->error(expected), tol);
Optimizer::shared_values actual = Optimizer::optimizeLM(graph, initValues);
EXPECT(assert_equal(expected, *actual, tol));
}
/* ************************************************************************* */
TEST( testNonlinearEqualityConstraint, odo_basics ) {
Point2 x1(1.0, 2.0), x2(2.0, 3.0), odom(1.0, 1.0);
simulated2D::PoseKey key1(1), key2(2);
double mu = 1000.0;
eq2D::OdoEqualityConstraint constraint(odom, key1, key2, mu);
simulated2D::Values config1;
config1.insert(key1, x1);
config1.insert(key2, x2);
EXPECT(constraint.active(config1));
EXPECT(assert_equal(zero(2), constraint.evaluateError(x1, x2), tol));
EXPECT(assert_equal(zero(2), constraint.unwhitenedError(config1), tol));
EXPECT_DOUBLES_EQUAL(0.0, constraint.error(config1), tol);
simulated2D::Values config2;
Point2 x1bad(2.0, 2.0);
Point2 x2bad(2.0, 2.0);
config2.insert(key1, x1bad);
config2.insert(key2, x2bad);
EXPECT(constraint.active(config2));
EXPECT(assert_equal(Vector_(2, -1.0, -1.0), constraint.evaluateError(x1bad, x2bad), tol));
EXPECT(assert_equal(Vector_(2, -1.0, -1.0), constraint.unwhitenedError(config2), tol));
EXPECT_DOUBLES_EQUAL(1000.0, constraint.error(config2), tol);
}
/* ************************************************************************* */
TEST( testNonlinearEqualityConstraint, odo_linearization ) {
Point2 x1(1.0, 2.0), x2(2.0, 3.0), odom(1.0, 1.0);
simulated2D::PoseKey key1(1), key2(2);
double mu = 1000.0;
Ordering ordering;
ordering += key1, key2;
eq2D::OdoEqualityConstraint constraint(odom, key1, key2, mu);
simulated2D::Values config1;
config1.insert(key1, x1);
config1.insert(key2, x2);
GaussianFactor::shared_ptr actual1 = constraint.linearize(config1, ordering);
GaussianFactor::shared_ptr expected1(
new JacobianFactor(ordering[key1], -eye(2,2), ordering[key2],
eye(2,2), zero(2), hard_model));
EXPECT(assert_equal(*expected1, *actual1, tol));
simulated2D::Values config2;
Point2 x1bad(2.0, 2.0);
Point2 x2bad(2.0, 2.0);
config2.insert(key1, x1bad);
config2.insert(key2, x2bad);
GaussianFactor::shared_ptr actual2 = constraint.linearize(config2, ordering);
GaussianFactor::shared_ptr expected2(
new JacobianFactor(ordering[key1], -eye(2,2), ordering[key2],
eye(2,2), Vector_(2, 1.0, 1.0), hard_model));
EXPECT(assert_equal(*expected2, *actual2, tol));
}
/* ************************************************************************* */
TEST( testNonlinearEqualityConstraint, odo_simple_optimize ) {
// create a two-node graph, connected by an odometry constraint, with
// a hard prior on one variable, and a conflicting soft prior
// on the other variable - the constraints should override the soft constraint
Point2 truth_pt1(1.0, 2.0), truth_pt2(3.0, 2.0);
simulated2D::PoseKey key1(1), key2(2);
// hard prior on x1
eq2D::UnaryEqualityConstraint::shared_ptr constraint1(
new eq2D::UnaryEqualityConstraint(truth_pt1, key1));
// soft prior on x2
Point2 badPt(100.0, -200.0);
simulated2D::Prior::shared_ptr factor(
new simulated2D::Prior(badPt, soft_model, key2));
// odometry constraint
eq2D::OdoEqualityConstraint::shared_ptr constraint2(
new eq2D::OdoEqualityConstraint(
truth_pt1.between(truth_pt2), key1, key2));
shared_graph graph(new Graph());
graph->push_back(constraint1);
graph->push_back(constraint2);
graph->push_back(factor);
shared_values initValues(new simulated2D::Values());
initValues->insert(key1, Point2());
initValues->insert(key2, badPt);
Optimizer::shared_values actual = Optimizer::optimizeLM(graph, initValues);
simulated2D::Values expected;
expected.insert(key1, truth_pt1);
expected.insert(key2, truth_pt2);
CHECK(assert_equal(expected, *actual, tol));
}
/* ********************************************************************* */
TEST (testNonlinearEqualityConstraint, two_pose ) {
/*
* Determining a ground truth linear system
* with two poses seeing one landmark, with each pose
* constrained to a particular value
*/
shared_graph graph(new Graph());
simulated2D::PoseKey x1(1), x2(2);
simulated2D::PointKey l1(1), l2(2);
Point2 pt_x1(1.0, 1.0),
pt_x2(5.0, 6.0);
graph->add(eq2D::UnaryEqualityConstraint(pt_x1, x1));
graph->add(eq2D::UnaryEqualityConstraint(pt_x2, x2));
Point2 z1(0.0, 5.0);
SharedNoiseModel sigma(noiseModel::Isotropic::Sigma(2, 0.1));
graph->add(simulated2D::Measurement(z1, sigma, x1,l1));
Point2 z2(-4.0, 0.0);
graph->add(simulated2D::Measurement(z2, sigma, x2,l2));
graph->add(eq2D::PointEqualityConstraint(l1, l2));
shared_values initialEstimate(new simulated2D::Values());
initialEstimate->insert(x1, pt_x1);
initialEstimate->insert(x2, Point2());
initialEstimate->insert(l1, Point2(1.0, 6.0)); // ground truth
initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
Optimizer::shared_values actual = Optimizer::optimizeLM(graph, initialEstimate);
simulated2D::Values expected;
expected.insert(x1, pt_x1);
expected.insert(l1, Point2(1.0, 6.0));
expected.insert(l2, Point2(1.0, 6.0));
expected.insert(x2, Point2(5.0, 6.0));
CHECK(assert_equal(expected, *actual, 1e-5));
}
/* ********************************************************************* */
TEST (testNonlinearEqualityConstraint, map_warp ) {
// get a graph
shared_graph graph(new Graph());
// keys
simulated2D::PoseKey x1(1), x2(2);
simulated2D::PointKey l1(1), l2(2);
// constant constraint on x1
Point2 pose1(1.0, 1.0);
graph->add(eq2D::UnaryEqualityConstraint(pose1, x1));
SharedDiagonal sigma = noiseModel::Isotropic::Sigma(1,0.1);
// measurement from x1 to l1
Point2 z1(0.0, 5.0);
graph->add(simulated2D::Measurement(z1, sigma, x1, l1));
// measurement from x2 to l2
Point2 z2(-4.0, 0.0);
graph->add(simulated2D::Measurement(z2, sigma, x2, l2));
// equality constraint between l1 and l2
graph->add(eq2D::PointEqualityConstraint(l1, l2));
// create an initial estimate
shared_values initialEstimate(new simulated2D::Values());
initialEstimate->insert(x1, Point2( 1.0, 1.0));
initialEstimate->insert(l1, Point2( 1.0, 6.0));
initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
initialEstimate->insert(x2, Point2( 0.0, 0.0)); // other pose starts at origin
// optimize
Optimizer::shared_values actual = Optimizer::optimizeLM(graph, initialEstimate);
simulated2D::Values expected;
expected.insert(x1, Point2(1.0, 1.0));
expected.insert(l1, Point2(1.0, 6.0));
expected.insert(l2, Point2(1.0, 6.0));
expected.insert(x2, Point2(5.0, 6.0));
CHECK(assert_equal(expected, *actual, tol));
}
// make a realistic calibration matrix
double fov = 60; // degrees
size_t w=640,h=480;
Cal3_S2 K(fov,w,h);
boost::shared_ptr<Cal3_S2> shK(new Cal3_S2(K));
// typedefs for visual SLAM example
typedef visualSLAM::Values VValues;
typedef boost::shared_ptr<VValues> shared_vconfig;
typedef visualSLAM::Graph VGraph;
typedef NonlinearOptimizer<VGraph,VValues> VOptimizer;
// factors for visual slam
typedef NonlinearEquality2<VValues, visualSLAM::PointKey> Point3Equality;
/* ********************************************************************* */
TEST (testNonlinearEqualityConstraint, stereo_constrained ) {
// create initial estimates
Rot3 faceDownY(Matrix_(3,3,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
0.0, -1.0, 0.0));
Pose3 pose1(faceDownY, Point3()); // origin, left camera
SimpleCamera camera1(K, pose1);
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
SimpleCamera camera2(K, pose2);
Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
// keys
visualSLAM::PoseKey x1(1), x2(2);
visualSLAM::PointKey l1(1), l2(2);
// create graph
VGraph::shared_graph graph(new VGraph());
// create equality constraints for poses
graph->addPoseConstraint(1, camera1.pose());
graph->addPoseConstraint(2, camera2.pose());
// create factors
SharedDiagonal vmodel = noiseModel::Unit::Create(3);
graph->addMeasurement(camera1.project(landmark), vmodel, 1, 1, shK);
graph->addMeasurement(camera2.project(landmark), vmodel, 2, 2, shK);
// add equality constraint
graph->add(Point3Equality(l1, l2));
// create initial data
Point3 landmark1(0.5, 5.0, 0.0);
Point3 landmark2(1.5, 5.0, 0.0);
shared_vconfig initValues(new VValues());
initValues->insert(x1, pose1);
initValues->insert(x2, pose2);
initValues->insert(l1, landmark1);
initValues->insert(l2, landmark2);
// optimize
VOptimizer::shared_values actual = VOptimizer::optimizeLM(graph, initValues);
// create config
VValues truthValues;
truthValues.insert(x1, camera1.pose());
truthValues.insert(x2, camera2.pose());
truthValues.insert(l1, landmark);
truthValues.insert(l2, landmark);
// check if correct
CHECK(assert_equal(truthValues, *actual, 1e-5));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */