3972 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			Plaintext
		
	
	
			
		
		
	
	
			3972 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			Plaintext
		
	
	
#LyX 2.1 created this file. For more info see http://www.lyx.org/
 | 
						||
\lyxformat 474
 | 
						||
\begin_document
 | 
						||
\begin_header
 | 
						||
\textclass article
 | 
						||
\use_default_options false
 | 
						||
\begin_modules
 | 
						||
theorems-std
 | 
						||
\end_modules
 | 
						||
\maintain_unincluded_children false
 | 
						||
\language english
 | 
						||
\language_package default
 | 
						||
\inputencoding auto
 | 
						||
\fontencoding global
 | 
						||
\font_roman times
 | 
						||
\font_sans default
 | 
						||
\font_typewriter default
 | 
						||
\font_math auto
 | 
						||
\font_default_family rmdefault
 | 
						||
\use_non_tex_fonts false
 | 
						||
\font_sc false
 | 
						||
\font_osf false
 | 
						||
\font_sf_scale 100
 | 
						||
\font_tt_scale 100
 | 
						||
\graphics default
 | 
						||
\default_output_format default
 | 
						||
\output_sync 0
 | 
						||
\bibtex_command default
 | 
						||
\index_command default
 | 
						||
\paperfontsize 12
 | 
						||
\spacing single
 | 
						||
\use_hyperref false
 | 
						||
\papersize default
 | 
						||
\use_geometry true
 | 
						||
\use_package amsmath 1
 | 
						||
\use_package amssymb 1
 | 
						||
\use_package cancel 1
 | 
						||
\use_package esint 0
 | 
						||
\use_package mathdots 1
 | 
						||
\use_package mathtools 1
 | 
						||
\use_package mhchem 1
 | 
						||
\use_package stackrel 1
 | 
						||
\use_package stmaryrd 1
 | 
						||
\use_package undertilde 1
 | 
						||
\cite_engine basic
 | 
						||
\cite_engine_type default
 | 
						||
\biblio_style plain
 | 
						||
\use_bibtopic false
 | 
						||
\use_indices false
 | 
						||
\paperorientation portrait
 | 
						||
\suppress_date false
 | 
						||
\justification true
 | 
						||
\use_refstyle 0
 | 
						||
\index Index
 | 
						||
\shortcut idx
 | 
						||
\color #008000
 | 
						||
\end_index
 | 
						||
\leftmargin 1in
 | 
						||
\topmargin 1in
 | 
						||
\rightmargin 1in
 | 
						||
\bottommargin 1in
 | 
						||
\secnumdepth 3
 | 
						||
\tocdepth 3
 | 
						||
\paragraph_separation indent
 | 
						||
\paragraph_indentation default
 | 
						||
\quotes_language english
 | 
						||
\papercolumns 1
 | 
						||
\papersides 1
 | 
						||
\paperpagestyle default
 | 
						||
\tracking_changes false
 | 
						||
\output_changes false
 | 
						||
\html_math_output 0
 | 
						||
\html_css_as_file 0
 | 
						||
\html_be_strict false
 | 
						||
\end_header
 | 
						||
 | 
						||
\begin_body
 | 
						||
 | 
						||
\begin_layout Title
 | 
						||
Lie Groups for Beginners
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Author
 | 
						||
Frank Dellaert
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset CommandInset include
 | 
						||
LatexCommand include
 | 
						||
filename "macros.lyx"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Section
 | 
						||
Motivation: Rigid Motions in the Plane
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
We will start with a small example of a robot moving in a plane, parameterized
 | 
						||
 by a 
 | 
						||
\emph on
 | 
						||
2D pose
 | 
						||
\emph default
 | 
						||
 
 | 
						||
\begin_inset Formula $(x,\,y,\,\theta)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 When we give it a small forward velocity 
 | 
						||
\begin_inset Formula $v_{x}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, we know that the location changes as 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\dot{x}=v_{x}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
The solution to this trivial differential equation is, with 
 | 
						||
\begin_inset Formula $x_{0}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 the initial 
 | 
						||
\begin_inset Formula $x$
 | 
						||
\end_inset
 | 
						||
 | 
						||
-position of the robot,
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
x_{t}=x_{0}+v_{x}t
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
A similar story holds for translation in the 
 | 
						||
\begin_inset Formula $y$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 direction, and in fact for translations in general:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
(x_{t},\,y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\,y_{0}+v_{y}t,\,\theta_{0})
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Similarly for rotation we have 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
(x_{t},\,y_{t},\,\theta_{t})=(x_{0},\,y_{0},\,\theta_{0}+\omega t)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is angular velocity, measured in 
 | 
						||
\begin_inset Formula $rad/s$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 in counterclockwise direction.
 | 
						||
 
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Float figure
 | 
						||
placement h
 | 
						||
wide false
 | 
						||
sideways false
 | 
						||
status collapsed
 | 
						||
 | 
						||
\begin_layout Plain Layout
 | 
						||
\align center
 | 
						||
\begin_inset Graphics
 | 
						||
	filename images/circular.pdf
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Caption Standard
 | 
						||
 | 
						||
\begin_layout Plain Layout
 | 
						||
Robot moving along a circular trajectory.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
However, if we combine translation and rotation, the story breaks down!
 | 
						||
 We cannot write
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
(x_{t},\,y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\,y_{0}+v_{y}t,\,\theta_{0}+\omega t)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
The reason is that, if we move the robot a tiny bit according to the velocity
 | 
						||
 vector 
 | 
						||
\begin_inset Formula $(v_{x},\,v_{y},\,\omega)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, we have (to first order)
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
(x_{\delta},\,y_{\delta},\,\theta_{\delta})=(x_{0}+v_{x}\delta,\,y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
but now the robot has rotated, and for the next incremental change, the
 | 
						||
 velocity vector would have to be rotated before it can be applied.
 | 
						||
 In fact, the robot will move on a 
 | 
						||
\emph on
 | 
						||
circular
 | 
						||
\emph default
 | 
						||
 trajectory.
 | 
						||
 
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The reason is that 
 | 
						||
\emph on
 | 
						||
translation and rotation do not commute
 | 
						||
\emph default
 | 
						||
: if we rotate and then move we will end up in a different place than if
 | 
						||
 we moved first, then rotated.
 | 
						||
 In fact, someone once said (I forget who, kudos for who can track down
 | 
						||
 the exact quote):
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Quote
 | 
						||
If rotation and translation commuted, we could do all rotations before leaving
 | 
						||
 home.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Float figure
 | 
						||
placement h
 | 
						||
wide false
 | 
						||
sideways false
 | 
						||
status open
 | 
						||
 | 
						||
\begin_layout Plain Layout
 | 
						||
\align center
 | 
						||
\begin_inset Graphics
 | 
						||
	filename images/n-steps.pdf
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Caption Standard
 | 
						||
 | 
						||
\begin_layout Plain Layout
 | 
						||
\begin_inset CommandInset label
 | 
						||
LatexCommand label
 | 
						||
name "fig:n-step-program"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Approximating a circular trajectory with 
 | 
						||
\begin_inset Formula $n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 steps.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
To make progress, we have to be more precise about how the robot behaves.
 | 
						||
 Specifically, let us define composition of two poses 
 | 
						||
\begin_inset Formula $T_{1}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $T_{2}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 as
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T_{1}T_{2}=(x_{1},\,y_{1},\,\theta_{1})(x_{2},\,y_{2},\,\theta_{2})=(x_{1}+\cos\theta_{1}x_{2}-\sin\theta y_{2},\,y_{1}+\sin\theta_{1}x_{2}+\cos\theta_{1}y_{2},\,\theta_{1}+\theta_{2})
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
This is a bit clumsy, so we resort to a trick: embed the 2D poses in the
 | 
						||
 space of 
 | 
						||
\begin_inset Formula $3\times3$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 matrices, so we can define composition as matrix multiplication:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T_{1}T_{2}=\left[\begin{array}{cc}
 | 
						||
R_{1} & t_{1}\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
R_{2} & t_{2}\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
R_{1}R_{2} & R_{1}t_{2}+t_{1}\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where the matrices 
 | 
						||
\begin_inset Formula $R$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 are 2D rotation matrices defined as 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
R=\left[\begin{array}{cc}
 | 
						||
\cos\theta & -\sin\theta\\
 | 
						||
\sin\theta & \cos\theta
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Now a 
 | 
						||
\begin_inset Quotes eld
 | 
						||
\end_inset
 | 
						||
 | 
						||
tiny
 | 
						||
\begin_inset Quotes erd
 | 
						||
\end_inset
 | 
						||
 | 
						||
 motion of the robot can be written as
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T(\delta)=\left[\begin{array}{ccc}
 | 
						||
\cos\omega\delta & -\sin\omega\delta & v_{x}\delta\\
 | 
						||
\sin\omega\delta & \cos\omega\delta & v_{y}\delta\\
 | 
						||
0 & 0 & 1
 | 
						||
\end{array}\right]\approx\left[\begin{array}{ccc}
 | 
						||
1 & -\omega\delta & v_{x}\delta\\
 | 
						||
\omega\delta & 1 & v_{y}\delta\\
 | 
						||
0 & 0 & 1
 | 
						||
\end{array}\right]=I+\delta\left[\begin{array}{ccc}
 | 
						||
0 & -\omega & v_{x}\\
 | 
						||
\omega & 0 & v_{y}\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Let us define the 
 | 
						||
\emph on
 | 
						||
2D twist
 | 
						||
\emph default
 | 
						||
 vector 
 | 
						||
\begin_inset Formula $\xi=(v,\omega)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and the matrix above as
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\xihat\define\left[\begin{array}{ccc}
 | 
						||
0 & -\omega & v_{x}\\
 | 
						||
\omega & 0 & v_{y}\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
If we wanted 
 | 
						||
\begin_inset Formula $t$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to be large, we could split up 
 | 
						||
\begin_inset Formula $t$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 into smaller timesteps, say 
 | 
						||
\begin_inset Formula $n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 of them, and compose them as follows:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T(t)\approx\left(I+\frac{t}{n}\xihat\right)\ldots\mbox{n times}\ldots\left(I+\frac{t}{n}\xihat\right)=\left(I+\frac{t}{n}\xihat\right)^{n}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
The result is shown in Figure 
 | 
						||
\begin_inset CommandInset ref
 | 
						||
LatexCommand ref
 | 
						||
reference "fig:n-step-program"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
Of course, the perfect solution would be obtained if we take 
 | 
						||
\begin_inset Formula $n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to infinity:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T(t)=\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
For real numbers, this series is familiar and is actually a way to compute
 | 
						||
 the exponential function:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
e^{x}=\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=\sum_{k=0}^{\infty}\frac{x^{k}}{k!}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
The series can be similarly defined for square matrices, and the final result
 | 
						||
 is that we can write the motion of a robot along a circular trajectory,
 | 
						||
 resulting from the 2D twist 
 | 
						||
\begin_inset Formula $\xi=(v,\omega)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula $ $
 | 
						||
\end_inset
 | 
						||
 | 
						||
 as the 
 | 
						||
\emph on
 | 
						||
matrix exponential
 | 
						||
\emph default
 | 
						||
 of 
 | 
						||
\begin_inset Formula $\xihat$
 | 
						||
\end_inset
 | 
						||
 | 
						||
:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T(t)=e^{t\xihat}\define\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}=\sum_{k=0}^{\infty}\frac{t^{k}}{k!}\xihat^{k}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
We call this mapping from 2D twists matrices 
 | 
						||
\begin_inset Formula $\xihat$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to 2D rigid transformations the 
 | 
						||
\emph on
 | 
						||
exponential map.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The above has all elements of Lie group theory.
 | 
						||
 We call the space of 2D rigid transformations, along with the composition
 | 
						||
 operation, the 
 | 
						||
\emph on
 | 
						||
special Euclidean group
 | 
						||
\emph default
 | 
						||
 
 | 
						||
\begin_inset Formula $\SEtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 It is called a Lie group because it is simultaneously a topological group
 | 
						||
 and a manifold, which implies that the multiplication and the inversion
 | 
						||
 operations are smooth.
 | 
						||
 The space of 2D twists, together with a special binary operation to be
 | 
						||
 defined below, is called the Lie algebra 
 | 
						||
\begin_inset Formula $\setwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 associated with 
 | 
						||
\begin_inset Formula $\SEtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Newpage pagebreak
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Section
 | 
						||
Basic Lie Group Concepts
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
We now define the concepts illustrated above, introduce some notation, and
 | 
						||
 see what we can say in general.
 | 
						||
 After this we then introduce the most commonly used Lie groups and their
 | 
						||
 Lie algebras.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
A Manifold and a Group
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
A 
 | 
						||
\series bold
 | 
						||
Lie group
 | 
						||
\series default
 | 
						||
 
 | 
						||
\begin_inset Formula $G$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is both a group 
 | 
						||
\emph on
 | 
						||
and
 | 
						||
\emph default
 | 
						||
 a manifold that possesses a smooth group operation.
 | 
						||
 Associated with it is a 
 | 
						||
\series bold
 | 
						||
Lie Algebra
 | 
						||
\series default
 | 
						||
 
 | 
						||
\begin_inset Formula $\gg$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 which, loosely speaking, can be identified with the tangent space at the
 | 
						||
 identity and completely defines how the groups behaves around the identity.
 | 
						||
 There is a mapping from 
 | 
						||
\begin_inset Formula $\gg$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 back to 
 | 
						||
\begin_inset Formula $G$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, called the 
 | 
						||
\series bold
 | 
						||
exponential map
 | 
						||
\series default
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\exp:\gg\rightarrow G
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
which is typically a many-to-one mapping.
 | 
						||
 The corresponding inverse can be define locally around the origin and hence
 | 
						||
 is a 
 | 
						||
\begin_inset Quotes eld
 | 
						||
\end_inset
 | 
						||
 | 
						||
logarithm
 | 
						||
\begin_inset Quotes erd
 | 
						||
\end_inset
 | 
						||
 | 
						||
 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\log:G\rightarrow\gg
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
that maps elements in a neighborhood of 
 | 
						||
\begin_inset Formula $id$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 in G to an element in 
 | 
						||
\begin_inset Formula $\gg$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
An important family of Lie groups are the matrix Lie groups, whose elements
 | 
						||
 are 
 | 
						||
\begin_inset Formula $n\times n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 invertible matrices.
 | 
						||
 The set of all such matrices, together with the matrix multiplication,
 | 
						||
 is called the general linear group 
 | 
						||
\begin_inset Formula $GL(n)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 of dimension 
 | 
						||
\begin_inset Formula $n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and any closed subgroup of it is a
 | 
						||
\series bold
 | 
						||
 matrix Lie group
 | 
						||
\series default
 | 
						||
.
 | 
						||
 Most if not all Lie groups we are interested in will be matrix Lie groups.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Lie Algebra
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The Lie Algebra 
 | 
						||
\begin_inset Formula $\gg$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is called an algebra because it is endowed with a binary operation, the
 | 
						||
 
 | 
						||
\series bold
 | 
						||
Lie bracket
 | 
						||
\series default
 | 
						||
 
 | 
						||
\begin_inset Formula $[X,Y]$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, the properties of which are closely related to the group operation of
 | 
						||
 
 | 
						||
\begin_inset Formula $G$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 For example, for algebras associated with matrix Lie groups, the Lie bracket
 | 
						||
 is given by 
 | 
						||
\begin_inset Formula $[A,B]\define AB-BA$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The relationship of the Lie bracket to the group operation is as follows:
 | 
						||
 for commutative Lie groups vector addition 
 | 
						||
\begin_inset Formula $X+Y$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 in 
 | 
						||
\begin_inset Formula $\gg$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 mimicks the group operation.
 | 
						||
 For example, if we have 
 | 
						||
\begin_inset Formula $Z=X+Y$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 in 
 | 
						||
\begin_inset Formula $\gg$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, when mapped backed to 
 | 
						||
\begin_inset Formula $G$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 via the exponential map we obtain 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
e^{Z}=e^{X+Y}=e^{X}e^{Y}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
However, this does 
 | 
						||
\emph on
 | 
						||
not
 | 
						||
\emph default
 | 
						||
 hold for non-commutative Lie groups:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
Z=\log(e^{X}e^{Y})\neq X+Y
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Instead, 
 | 
						||
\begin_inset Formula $Z$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 can be calculated using the Baker-Campbell-Hausdorff (BCH) formula
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
key "Hall00book"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Note Note
 | 
						||
status collapsed
 | 
						||
 | 
						||
\begin_layout Plain Layout
 | 
						||
http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula
 | 
						||
\end_layout
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-[Y,[X,[X,Y]]]/24+\ldots
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
For commutative groups the bracket is zero and we recover 
 | 
						||
\begin_inset Formula $Z=X+Y$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 For non-commutative groups we can use the BCH formula to approximate it.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Exponential Coordinates
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
For 
 | 
						||
\begin_inset Formula $n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
-dimensional matrix Lie groups, as a vector space the Lie algebra 
 | 
						||
\begin_inset Formula $\gg$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is isomorphic to 
 | 
						||
\begin_inset Formula $\mathbb{R}^{n}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and we can define the hat operator 
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
after "page 41"
 | 
						||
key "Murray94book"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
,
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\hat{}:x\in\mathbb{R}^{n}\rightarrow\xhat\in\gg
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
which maps 
 | 
						||
\begin_inset Formula $n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
-vectors 
 | 
						||
\begin_inset Formula $x\in\mathbb{R}^{n}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to elements of 
 | 
						||
\begin_inset Formula $\gg$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 In the case of matrix Lie groups, the elements 
 | 
						||
\begin_inset Formula $\xhat$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 of 
 | 
						||
\begin_inset Formula $\gg$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 are also 
 | 
						||
\begin_inset Formula $n\times n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 matrices, and the map is given by
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{equation}
 | 
						||
\xhat=\sum_{i=1}^{n}x_{i}G^{i}\label{eq:generators}
 | 
						||
\end{equation}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where the 
 | 
						||
\begin_inset Formula $G^{i}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 are 
 | 
						||
\begin_inset Formula $n\times n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 matrices known as Lie group generators.
 | 
						||
 The meaning of the map 
 | 
						||
\begin_inset Formula $x\rightarrow\xhat$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 will depend on the group 
 | 
						||
\begin_inset Formula $G$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and will generally have an intuitive interpretation.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Actions
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
An important concept is that of a group element acting on an element of
 | 
						||
 a manifold 
 | 
						||
\begin_inset Formula $M$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 For example, 2D rotations act on 2D points, 3D rotations act on 3D points,
 | 
						||
 etc.
 | 
						||
 In particular, a 
 | 
						||
\series bold
 | 
						||
left action
 | 
						||
\series default
 | 
						||
 of 
 | 
						||
\begin_inset Formula $G$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 on 
 | 
						||
\begin_inset Formula $M$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is defined as a smooth map 
 | 
						||
\begin_inset Formula $\Phi:G\times M\rightarrow M$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 such that 
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
after "Appendix A"
 | 
						||
key "Murray94book"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
:
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Enumerate
 | 
						||
The identity element 
 | 
						||
\begin_inset Formula $e$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 has no effect, i.e., 
 | 
						||
\begin_inset Formula $\Phi(e,p)=p$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Enumerate
 | 
						||
Composing two actions can be combined into one action: 
 | 
						||
\begin_inset Formula $\Phi(g,\Phi(h,p))=\Phi(gh,p)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The (usual) action of an 
 | 
						||
\begin_inset Formula $n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
-dimensional matrix group 
 | 
						||
\begin_inset Formula $G$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is matrix-vector multiplication on 
 | 
						||
\begin_inset Formula $\mathbb{R}^{n}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
q=Ap
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
with 
 | 
						||
\begin_inset Formula $p,q\in\mathbb{R}^{n}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $A\in G\subseteq GL(n)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
The Adjoint Map and Adjoint Representation
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
Suppose a point 
 | 
						||
\begin_inset Formula $p$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is specified as 
 | 
						||
\begin_inset Formula $p'$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 in the frame 
 | 
						||
\begin_inset Formula $T$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, i.e., 
 | 
						||
\begin_inset Formula $p'=Tp$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, where 
 | 
						||
\begin_inset Formula $T$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 transforms from the global coordinates 
 | 
						||
\begin_inset Formula $p$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to the local frame 
 | 
						||
\begin_inset Formula $p'$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 To apply an action 
 | 
						||
\begin_inset Formula $A$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 we first need to undo 
 | 
						||
\begin_inset Formula $T$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, then apply 
 | 
						||
\begin_inset Formula $A$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and then transform the result back to 
 | 
						||
\begin_inset Formula $T$
 | 
						||
\end_inset
 | 
						||
 | 
						||
: 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
q'=TAT^{-1}p'
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
The matrix 
 | 
						||
\begin_inset Formula $TAT^{-1}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is said to be conjugate to 
 | 
						||
\begin_inset Formula $A$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and this is a central element of group theory.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
In general, the 
 | 
						||
\series bold
 | 
						||
adjoint map
 | 
						||
\series default
 | 
						||
 
 | 
						||
\begin_inset Formula $\AAdd g$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 maps a group element 
 | 
						||
\begin_inset Formula $a\in G$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to its 
 | 
						||
\series bold
 | 
						||
conjugate
 | 
						||
\series default
 | 
						||
 
 | 
						||
\begin_inset Formula $gag^{-1}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 by 
 | 
						||
\begin_inset Formula $g$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 This map captures conjugacy in the group 
 | 
						||
\begin_inset Formula $G$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, but there is an equivalent notion in the Lie algebra 
 | 
						||
\begin_inset Formula $\mathfrak{\gg}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, 
 | 
						||
\begin_inset Note Note
 | 
						||
status open
 | 
						||
 | 
						||
\begin_layout Plain Layout
 | 
						||
http://en.wikipedia.org/wiki/Exponential_map
 | 
						||
\end_layout
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\AAdd ge^{\xhat}=g\exp\left(\xhat\right)g^{-1}=\exp(\Ad g{\xhat})
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where 
 | 
						||
\begin_inset Formula $\Ad g:\gg\rightarrow\mathfrak{\gg}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a map parameterized by a group element 
 | 
						||
\begin_inset Formula $g$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and is called the 
 | 
						||
\emph on
 | 
						||
adjoint representation
 | 
						||
\emph default
 | 
						||
.
 | 
						||
 The intuitive explanation is that a change 
 | 
						||
\begin_inset Formula $\exp\left(\xhat\right)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 defined around the origin, but applied at the group element 
 | 
						||
\begin_inset Formula $g$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, can be written in one step by taking the adjoint 
 | 
						||
\begin_inset Formula $\Ad g{\xhat}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 of 
 | 
						||
\begin_inset Formula $\xhat$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
In the special case of matrix Lie groups the adjoint can be written as 
 | 
						||
\begin_inset Note Note
 | 
						||
status collapsed
 | 
						||
 | 
						||
\begin_layout Plain Layout
 | 
						||
http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group
 | 
						||
\end_layout
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\Ad T{\xhat}\define T\xhat T^{-1}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
and hence we have
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{equation}
 | 
						||
Te^{\xhat}T^{-1}=e^{T\xhat T^{-1}}\label{eq:matrixAdjoint}
 | 
						||
\end{equation}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where both 
 | 
						||
\begin_inset Formula $T\in G$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $\xhat\in\gg$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 are 
 | 
						||
\begin_inset Formula $n\times n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 matrices for an 
 | 
						||
\begin_inset Formula $n$
 | 
						||
\end_inset
 | 
						||
 | 
						||
-dimensional Lie group.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Newpage pagebreak
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Section
 | 
						||
2D Rotations
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
We first look at a very simple group, the 2D rotations.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Basics
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The Lie group 
 | 
						||
\begin_inset Formula $\SOtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a subgroup of the general linear group 
 | 
						||
\begin_inset Formula $GL(2)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 of 
 | 
						||
\begin_inset Formula $2\times2$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 invertible matrices.
 | 
						||
 Its Lie algebra 
 | 
						||
\begin_inset Formula $\sotwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is the vector space of 
 | 
						||
\begin_inset Formula $2\times2$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 skew-symmetric matrices.
 | 
						||
 Since 
 | 
						||
\begin_inset Formula $\SOtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a one-dimensional manifold, 
 | 
						||
\begin_inset Formula $\sotwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is isomorphic to 
 | 
						||
\begin_inset Formula $\mathbb{R}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and we define
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\hat{}:\mathbb{R}\rightarrow\sotwo
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\hat{}:\omega\rightarrow\what=\skew{\omega}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
which maps the angle 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to the 
 | 
						||
\begin_inset Formula $2\times2$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 skew-symmetric matrix 
 | 
						||
\family roman
 | 
						||
\series medium
 | 
						||
\shape up
 | 
						||
\size normal
 | 
						||
\emph off
 | 
						||
\bar no
 | 
						||
\noun off
 | 
						||
\color none
 | 
						||
 | 
						||
\begin_inset Formula $\skew{\omega}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
:
 | 
						||
\family default
 | 
						||
\series default
 | 
						||
\shape default
 | 
						||
\size default
 | 
						||
\emph default
 | 
						||
\bar default
 | 
						||
\noun default
 | 
						||
\color inherit
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\skew{\omega}=\left[\begin{array}{cc}
 | 
						||
0 & -\omega\\
 | 
						||
\omega & 0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
The exponential map can be computed in closed form as 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
e^{\skew{\omega}}=\left[\begin{array}{cc}
 | 
						||
\cos\omega & -\sin\omega\\
 | 
						||
\sin\omega & \cos\omega
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
\begin_inset CommandInset label
 | 
						||
LatexCommand label
 | 
						||
name "sub:Diagonalized2D"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Diagonalized Form
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The matrix 
 | 
						||
\begin_inset Formula $\skew 1$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 can be diagonalized (see 
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
key "Hall00book"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
) with eigenvalues 
 | 
						||
\begin_inset Formula $-i$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $i$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 , and eigenvectors 
 | 
						||
\begin_inset Formula $\left[\begin{array}{c}
 | 
						||
1\\
 | 
						||
i
 | 
						||
\end{array}\right]$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $\left[\begin{array}{c}
 | 
						||
i\\
 | 
						||
1
 | 
						||
\end{array}\right]$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 .
 | 
						||
 Readers familiar with projective geometry will recognize these as the circular
 | 
						||
 points when promoted to homogeneous coordinates.
 | 
						||
 In particular:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\skew{\omega}=\left[\begin{array}{cc}
 | 
						||
0 & -\omega\\
 | 
						||
\omega & 0
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
1 & i\\
 | 
						||
i & 1
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
-i\omega & 0\\
 | 
						||
0 & i\omega
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
1 & i\\
 | 
						||
i & 1
 | 
						||
\end{array}\right]^{-1}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
and hence
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
e^{\skew{\omega}}=\frac{1}{2}\left[\begin{array}{cc}
 | 
						||
1 & i\\
 | 
						||
i & 1
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
e^{-i\omega} & 0\\
 | 
						||
0 & e^{i\omega}
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
1 & -i\\
 | 
						||
-i & 1
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
\cos\omega & -\sin\omega\\
 | 
						||
\sin\omega & \cos\omega
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where the latter can be shown using 
 | 
						||
\begin_inset Formula $e^{i\omega}=\cos\omega+i\sin\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Adjoint
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The adjoint for 
 | 
						||
\begin_inset Formula $\sotwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is trivially equal to the identity, as is the case for 
 | 
						||
\emph on
 | 
						||
all
 | 
						||
\emph default
 | 
						||
 commutative groups:
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{eqnarray*}
 | 
						||
\Ad R\what & = & \left[\begin{array}{cc}
 | 
						||
\cos\theta & -\sin\theta\\
 | 
						||
\sin\theta & \cos\theta
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
0 & -\omega\\
 | 
						||
\omega & 0
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
\cos\theta & -\sin\theta\\
 | 
						||
\sin\theta & \cos\theta
 | 
						||
\end{array}\right]^{T}\\
 | 
						||
 & = & \omega\left[\begin{array}{cc}
 | 
						||
-\sin\theta & -\cos\theta\\
 | 
						||
\cos\theta & -\sin\theta
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
\cos\theta & \sin\theta\\
 | 
						||
-\sin\theta & \cos\theta
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
0 & -\omega\\
 | 
						||
\omega & 0
 | 
						||
\end{array}\right]
 | 
						||
\end{eqnarray*}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
i.e., 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\Ad R\what=\what
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Actions
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
In the case of 
 | 
						||
\begin_inset Formula $\SOtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 the vector space is 
 | 
						||
\begin_inset Formula $\Rtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and the group action corresponds to rotating a point
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
q=Rp
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
We would now like to know what an incremental rotation parameterized by
 | 
						||
 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 would do:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
q(\text{\omega})=Re^{\skew{\omega}}p
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
For small angles 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 we have 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
e^{\skew{\omega}}\approx I+\skew{\omega}=I+\omega\skew 1
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where 
 | 
						||
\begin_inset Formula $\skew 1$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 acts like a restricted 
 | 
						||
\begin_inset Quotes eld
 | 
						||
\end_inset
 | 
						||
 | 
						||
cross product
 | 
						||
\begin_inset Quotes erd
 | 
						||
\end_inset
 | 
						||
 | 
						||
 in the plane on points: 
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{equation}
 | 
						||
\skew 1\left[\begin{array}{c}
 | 
						||
x\\
 | 
						||
y
 | 
						||
\end{array}\right]=R_{\pi/2}\left[\begin{array}{c}
 | 
						||
x\\
 | 
						||
y
 | 
						||
\end{array}\right]=\left[\begin{array}{c}
 | 
						||
-y\\
 | 
						||
x
 | 
						||
\end{array}\right]\label{eq:RestrictedCross}
 | 
						||
\end{equation}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Hence the derivative of the action is given as 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\omega}}p\right)=R\deriv{}{\omega}\left(\omega\skew 1p\right)=RH_{p}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where 
 | 
						||
\begin_inset Formula $H_{p}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a 
 | 
						||
\begin_inset Formula $2\times1$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 matrix that depends on 
 | 
						||
\begin_inset Formula $p$
 | 
						||
\end_inset
 | 
						||
 | 
						||
:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
H_{p}\define\skew 1p=\left[\begin{array}{c}
 | 
						||
-p_{y}\\
 | 
						||
p_{x}
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Newpage pagebreak
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Section
 | 
						||
2D Rigid Transformations
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Basics
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The Lie group 
 | 
						||
\begin_inset Formula $\SEtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a subgroup of the general linear group 
 | 
						||
\begin_inset Formula $GL(3)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 of 
 | 
						||
\begin_inset Formula $3\times3$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 invertible matrices of the form
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T\define\left[\begin{array}{cc}
 | 
						||
R & t\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where 
 | 
						||
\begin_inset Formula $R\in\SOtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a rotation matrix and 
 | 
						||
\begin_inset Formula $t\in\Rtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a translation vector.
 | 
						||
 
 | 
						||
\begin_inset Formula $\SEtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is the 
 | 
						||
\emph on
 | 
						||
semi-direct product
 | 
						||
\emph default
 | 
						||
 of 
 | 
						||
\begin_inset Formula $\Rtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 by 
 | 
						||
\begin_inset Formula $SO(2)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, written as 
 | 
						||
\begin_inset Formula $\SEtwo=\Rtwo\rtimes\SOtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 In particular, any element 
 | 
						||
\begin_inset Formula $T$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 of 
 | 
						||
\begin_inset Formula $\SEtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 can be written as
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T=\left[\begin{array}{cc}
 | 
						||
0 & t\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
R & 0\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
and they compose as
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T_{1}T_{2}=\left[\begin{array}{cc}
 | 
						||
R_{1} & t_{1}\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
R_{2} & t_{2}\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
R_{1}R_{2} & R_{1}t_{2}+t_{1}\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Hence, an alternative way of writing down elements of 
 | 
						||
\begin_inset Formula $\SEtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is as the ordered pair 
 | 
						||
\begin_inset Formula $(R,\,t)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, with composition defined a
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
(R_{1},\,t_{1})(R_{2},\,t_{2})=(R_{1}R_{2},\,R{}_{1}t_{2}+t_{1})
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The corresponding Lie algebra 
 | 
						||
\begin_inset Formula $\setwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is the vector space of 
 | 
						||
\begin_inset Formula $3\times3$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 twists 
 | 
						||
\begin_inset Formula $\xihat$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 parameterized by the 
 | 
						||
\emph on
 | 
						||
twist coordinates
 | 
						||
\emph default
 | 
						||
 
 | 
						||
\begin_inset Formula $\xi\in\Rthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, with the mapping 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\xi\define\left[\begin{array}{c}
 | 
						||
v\\
 | 
						||
\omega
 | 
						||
\end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc}
 | 
						||
\skew{\omega} & v\\
 | 
						||
0 & 0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Note we think of robots as having a pose 
 | 
						||
\begin_inset Formula $(x,y,\theta)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and hence I reserved the first two components for translation and the last
 | 
						||
 for rotation.
 | 
						||
 
 | 
						||
\family roman
 | 
						||
\series medium
 | 
						||
\shape up
 | 
						||
\size normal
 | 
						||
\emph off
 | 
						||
\bar no
 | 
						||
\noun off
 | 
						||
\color none
 | 
						||
The corresponding Lie group generators are
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{x}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 1\\
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{y}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 1\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{\theta}=\left[\begin{array}{ccc}
 | 
						||
0 & -1 & 0\\
 | 
						||
1 & 0 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\family default
 | 
						||
\series default
 | 
						||
\shape default
 | 
						||
\size default
 | 
						||
\emph default
 | 
						||
\bar default
 | 
						||
\noun default
 | 
						||
\color inherit
 | 
						||
Applying the exponential map to a twist 
 | 
						||
\begin_inset Formula $\xi$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 yields a screw motion yielding an element in 
 | 
						||
\begin_inset Formula $\SEtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
: 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T=e^{\xihat}=\left(e^{\skew{\omega}},(I-e^{\skew{\omega}})\frac{v^{\perp}}{\omega}\right)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
The Adjoint Map
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The adjoint is 
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{eqnarray}
 | 
						||
\Ad T{\xihat} & = & T\xihat T^{-1}\nonumber \\
 | 
						||
 & = & =\left[\begin{array}{cc}
 | 
						||
R & t\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
\skew{\omega} & v\\
 | 
						||
0 & 0
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
R^{T} & -R^{T}t\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\nonumber \\
 | 
						||
 & = & \left[\begin{array}{cc}
 | 
						||
\skew{\omega} & -\skew{\omega}t+Rv\\
 | 
						||
0 & 0
 | 
						||
\end{array}\right]\nonumber \\
 | 
						||
 & = & \left[\begin{array}{cc}
 | 
						||
\skew{\omega} & Rv-t^{\perp}\omega\\
 | 
						||
0 & 0
 | 
						||
\end{array}\right]\label{eq:adjointSE2}
 | 
						||
\end{eqnarray}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
From this we can express the Adjoint map in terms of plane twist coordinates:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\left[\begin{array}{c}
 | 
						||
v'\\
 | 
						||
\omega'
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
R & -t^{\perp}\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\left[\begin{array}{c}
 | 
						||
v\\
 | 
						||
\omega
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Actions
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The action of 
 | 
						||
\begin_inset Formula $\SEtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 on 2D points is done by embedding the points in 
 | 
						||
\begin_inset Formula $\mathbb{R}^{3}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 by using homogeneous coordinates
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\hat{q}=\left[\begin{array}{c}
 | 
						||
q\\
 | 
						||
1
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
R & t\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\left[\begin{array}{c}
 | 
						||
p\\
 | 
						||
1
 | 
						||
\end{array}\right]=T\hat{p}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Analoguous to 
 | 
						||
\begin_inset Formula $\SEthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 (see below), we can compute a velocity 
 | 
						||
\begin_inset Formula $\xihat\hat{p}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 in the local 
 | 
						||
\begin_inset Formula $T$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 frame: 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\xihat\hat{p}=\left[\begin{array}{cc}
 | 
						||
\skew{\omega} & v\\
 | 
						||
0 & 0
 | 
						||
\end{array}\right]\left[\begin{array}{c}
 | 
						||
p\\
 | 
						||
1
 | 
						||
\end{array}\right]=\left[\begin{array}{c}
 | 
						||
\skew{\omega}p+v\\
 | 
						||
0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
By only taking the top two rows, we can write this as a velocity in 
 | 
						||
\begin_inset Formula $\Rtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, as the product of a 
 | 
						||
\begin_inset Formula $2\times3$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 matrix 
 | 
						||
\begin_inset Formula $H_{p}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 that acts upon the exponential coordinates 
 | 
						||
\begin_inset Formula $\xi$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 directly:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\skew{\omega}p+v=v+R_{\pi/2}p\omega=\left[\begin{array}{cc}
 | 
						||
I_{2} & R_{\pi/2}p\end{array}\right]\left[\begin{array}{c}
 | 
						||
v\\
 | 
						||
\omega
 | 
						||
\end{array}\right]=H_{p}\xi
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Newpage pagebreak
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Section
 | 
						||
3D Rotations
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Basics
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The Lie group 
 | 
						||
\begin_inset Formula $\SOthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a subgroup of the general linear group 
 | 
						||
\begin_inset Formula $GL(3)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 of 
 | 
						||
\begin_inset Formula $3\times3$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 invertible matrices.
 | 
						||
 Its Lie algebra 
 | 
						||
\begin_inset Formula $\sothree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is the vector space of 
 | 
						||
\begin_inset Formula $3\times3$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 skew-symmetric matrices 
 | 
						||
\begin_inset Formula $\what$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 Since 
 | 
						||
\begin_inset Formula $\SOthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a three-dimensional manifold, 
 | 
						||
\begin_inset Formula $\sothree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is isomorphic to 
 | 
						||
\begin_inset Formula $\Rthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and we define the map
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\hat{}:\Rthree\rightarrow\sothree
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\hat{}:\omega\rightarrow\what=\Skew{\omega}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
which maps 3-vectors 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to skew-symmetric matrices 
 | 
						||
\begin_inset Formula $\Skew{\omega}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 :
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\Skew{\omega}=\left[\begin{array}{ccc}
 | 
						||
0 & -\omega_{z} & \omega_{y}\\
 | 
						||
\omega_{z} & 0 & -\omega_{x}\\
 | 
						||
-\omega_{y} & \omega_{x} & 0
 | 
						||
\end{array}\right]=\omega_{x}G^{x}+\omega_{y}G^{y}+\omega_{z}G^{z}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Here the matrices 
 | 
						||
\begin_inset Formula $G^{i}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 are the generators for 
 | 
						||
\begin_inset Formula $\SOthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
,
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{x}=\left(\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & -1\\
 | 
						||
0 & 1 & 0
 | 
						||
\end{array}\right)\mbox{}G^{y}=\left(\begin{array}{ccc}
 | 
						||
0 & 0 & 1\\
 | 
						||
0 & 0 & 0\\
 | 
						||
-1 & 0 & 0
 | 
						||
\end{array}\right)\mbox{ }G^{z}=\left(\begin{array}{ccc}
 | 
						||
0 & -1 & 0\\
 | 
						||
1 & 0 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
corresponding to a rotation around 
 | 
						||
\begin_inset Formula $X$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, 
 | 
						||
\begin_inset Formula $Y$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and 
 | 
						||
\begin_inset Formula $Z$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, respectively.
 | 
						||
 The Lie bracket 
 | 
						||
\begin_inset Formula $[x,y]$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 in 
 | 
						||
\begin_inset Formula $\sothree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 corresponds to the cross product 
 | 
						||
\begin_inset Formula $x\times y$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 in 
 | 
						||
\begin_inset Formula $\Rthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
Hence, for every 
 | 
						||
\begin_inset Formula $3$
 | 
						||
\end_inset
 | 
						||
 | 
						||
-vector 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 there is a corresponding rotation matrix
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
R=e^{\Skew{\omega}}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
which defines a canonical parameterization of 
 | 
						||
\begin_inset Formula $\SOthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, with 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 known as the canonical or exponential coordinates.
 | 
						||
 It is equivalent to the axis-angle representation for rotations, where
 | 
						||
 the unit vector 
 | 
						||
\begin_inset Formula $\omega/\theta$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 defines the rotation axis, and its magnitude the amount of rotation 
 | 
						||
\begin_inset Formula $\theta$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The exponential map can be computed in closed form using 
 | 
						||
\series bold
 | 
						||
Rodrigues' formula
 | 
						||
\series default
 | 
						||
 
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
after "page 28"
 | 
						||
key "Murray94book"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
:
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{equation}
 | 
						||
e^{\what}=I+\frac{\sin\theta}{\theta}\what+\frac{1\text{−}\cos\theta}{\theta^{2}}\what^{2}\label{eq:Rodrigues}
 | 
						||
\end{equation}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where 
 | 
						||
\begin_inset Formula $\what^{2}=\omega\omega^{T}-I$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, with 
 | 
						||
\begin_inset Formula $\omega\omega^{T}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 the outer product of 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 Hence, a slightly more efficient variant is
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{equation}
 | 
						||
e^{\what}=\left(\cos\theta\right)I+\frac{\sin\theta}{\theta}\what+\frac{1\text{−}cos\theta}{\theta^{2}}\omega\omega^{T}\label{eq:Rodrigues2}
 | 
						||
\end{equation}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Diagonalized Form
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
Because a 3D rotation 
 | 
						||
\begin_inset Formula $R$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 leaves the axis 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 unchanged, 
 | 
						||
\begin_inset Formula $R$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 can be diagonalized as
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
R=C\left(\begin{array}{ccc}
 | 
						||
e^{-i\theta} & 0 & 0\\
 | 
						||
0 & e^{i\theta} & 0\\
 | 
						||
0 & 0 & 1
 | 
						||
\end{array}\right)C^{-1}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
with 
 | 
						||
\begin_inset Formula $C=\left(\begin{array}{ccc}
 | 
						||
c_{1} & c_{2} & \omega/\theta\end{array}\right)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, where 
 | 
						||
\begin_inset Formula $c_{1}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $c_{2}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 are the complex eigenvectors corresponding to the 2D rotation around 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 This also means that, by 
 | 
						||
\begin_inset CommandInset ref
 | 
						||
LatexCommand eqref
 | 
						||
reference "eq:matrixAdjoint"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
,
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\hat{\omega}=C\left(\begin{array}{ccc}
 | 
						||
-i\theta & 0 & 0\\
 | 
						||
0 & i\theta & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right)C^{-1}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
In this case, 
 | 
						||
\begin_inset Formula $C$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 has complex columns, but we also have
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{equation}
 | 
						||
\hat{\omega}=B\left(\begin{array}{ccc}
 | 
						||
0 & -\theta & 0\\
 | 
						||
\theta & 0 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right)B^{T}\label{eq:OmegaDecomposed}
 | 
						||
\end{equation}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
with 
 | 
						||
\begin_inset Formula $B=\left(\begin{array}{ccc}
 | 
						||
b_{1} & b_{2} & \omega/\theta\end{array}\right)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, where 
 | 
						||
\begin_inset Formula $b_{1}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $b_{2}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 form a basis for the 2D plane through the origin and perpendicular to 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 Clearly, from Section 
 | 
						||
\begin_inset CommandInset ref
 | 
						||
LatexCommand ref
 | 
						||
reference "sub:Diagonalized2D"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
, we have 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
c_{1}=B\left(\begin{array}{c}
 | 
						||
1\\
 | 
						||
i\\
 | 
						||
0
 | 
						||
\end{array}\right)\mbox{\,\,\,\ and\,\,\,\,\,}c_{2}=B\left(\begin{array}{c}
 | 
						||
i\\
 | 
						||
1\\
 | 
						||
0
 | 
						||
\end{array}\right)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
and when we exponentiate 
 | 
						||
\begin_inset CommandInset ref
 | 
						||
LatexCommand eqref
 | 
						||
reference "eq:OmegaDecomposed"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 we expose the 2D rotation around the axis 
 | 
						||
\begin_inset Formula $\omega/\theta$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 with magnitude 
 | 
						||
\begin_inset Formula $\theta$
 | 
						||
\end_inset
 | 
						||
 | 
						||
: 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
R=B\left(\begin{array}{ccc}
 | 
						||
\cos\theta & -\sin\theta & 0\\
 | 
						||
\sin\theta & \cos\theta & 0\\
 | 
						||
0 & 0 & 1
 | 
						||
\end{array}\right)B^{T}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
The latter form for 
 | 
						||
\begin_inset Formula $R$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 can be used to prove Rodrigues' formula.
 | 
						||
 Expanding the above, we get
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
R=\left(\cos\theta\right)\left(b_{1}b_{1}^{T}+b_{2}b_{2}^{T}\right)+\left(\sin\theta\right)\left(b_{2}b_{1}^{T}-b_{1}b_{2}^{T}\right)+\omega\omega^{T}/\theta^{2}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\family roman
 | 
						||
\series medium
 | 
						||
\shape up
 | 
						||
\size normal
 | 
						||
\emph off
 | 
						||
\bar no
 | 
						||
\strikeout off
 | 
						||
\uuline off
 | 
						||
\uwave off
 | 
						||
\noun off
 | 
						||
\color none
 | 
						||
 | 
						||
\begin_inset Note Note
 | 
						||
status collapsed
 | 
						||
 | 
						||
\begin_layout Plain Layout
 | 
						||
 | 
						||
\family roman
 | 
						||
\series medium
 | 
						||
\shape up
 | 
						||
\size normal
 | 
						||
\emph off
 | 
						||
\bar no
 | 
						||
\strikeout off
 | 
						||
\uuline off
 | 
						||
\uwave off
 | 
						||
\noun off
 | 
						||
\color none
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{eqnarray*}
 | 
						||
R & = & \left(\begin{array}{ccc}
 | 
						||
b_{1} & b_{2} & \omega/\theta\end{array}\right)\left(\begin{array}{ccc}
 | 
						||
\cos\theta & -\sin\theta & 0\\
 | 
						||
\sin\theta & \cos\theta & 0\\
 | 
						||
0 & 0 & 1
 | 
						||
\end{array}\right)\left(\begin{array}{c}
 | 
						||
b_{1}^{T}\\
 | 
						||
b_{2}^{T}\\
 | 
						||
\omega^{T}/\theta
 | 
						||
\end{array}\right)\\
 | 
						||
 & = & \left(\begin{array}{ccc}
 | 
						||
b_{1} & b_{2} & \omega/\theta\end{array}\right)\left(\begin{array}{c}
 | 
						||
b_{1}^{T}\cos\theta-b_{2}^{T}\sin\theta\\
 | 
						||
b_{1}^{T}\sin\theta+b_{2}^{T}\cos\theta\\
 | 
						||
\omega^{T}/\theta
 | 
						||
\end{array}\right)\\
 | 
						||
 & = & b_{1}b_{1}^{T}\cos\theta-b_{1}b_{2}^{T}\sin\theta+b_{2}b_{1}^{T}\sin\theta+b_{2}b_{2}^{T}\cos\theta+\omega\omega^{T}/\theta^{2}
 | 
						||
\end{eqnarray*}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Because 
 | 
						||
\begin_inset Formula $B$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a rotation matrix, we have 
 | 
						||
\begin_inset Formula $BB^{T}=b_{1}b_{1}^{T}+b_{2}b_{2}^{T}+\omega\omega^{T}/\theta^{2}=I$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and using 
 | 
						||
\begin_inset CommandInset ref
 | 
						||
LatexCommand eqref
 | 
						||
reference "eq:OmegaDecomposed"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 it is easy to show that 
 | 
						||
\begin_inset Formula $b_{2}b_{1}^{T}-b_{1}b_{2}^{T}=\hat{\omega}/\theta$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, hence
 | 
						||
\family default
 | 
						||
\series default
 | 
						||
\shape default
 | 
						||
\size default
 | 
						||
\emph default
 | 
						||
\bar default
 | 
						||
\strikeout default
 | 
						||
\uuline default
 | 
						||
\uwave default
 | 
						||
\noun default
 | 
						||
\color inherit
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
R=\left(\cos\theta\right)(I-\omega\omega^{T}/\theta^{2})+\left(\sin\theta\right)\left(\hat{\omega}/\theta\right)+\omega\omega^{T}/\theta^{2}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
which is equivalent to 
 | 
						||
\begin_inset CommandInset ref
 | 
						||
LatexCommand eqref
 | 
						||
reference "eq:Rodrigues2"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
The Adjoint Map
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
For rotation matrices 
 | 
						||
\begin_inset Formula $R$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 we can prove the following identity (see 
 | 
						||
\begin_inset CommandInset ref
 | 
						||
LatexCommand vref
 | 
						||
reference "proof1"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
): 
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{equation}
 | 
						||
R\Skew{\omega}R^{T}=\Skew{R\omega}\label{eq:property1}
 | 
						||
\end{equation}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Hence, given property 
 | 
						||
\begin_inset CommandInset ref
 | 
						||
LatexCommand eqref
 | 
						||
reference "eq:property1"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
, the adjoint map for 
 | 
						||
\begin_inset Formula $\sothree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 simplifies to
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\Ad R{\Skew{\omega}}=R\Skew{\omega}R^{T}=\Skew{R\omega}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
and this can be expressed in exponential coordinates simply by rotating
 | 
						||
 the axis 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to 
 | 
						||
\begin_inset Formula $R\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
As an example, to apply an axis-angle rotation 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to a point 
 | 
						||
\begin_inset Formula $p$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 in the frame 
 | 
						||
\begin_inset Formula $R$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, we could:
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Enumerate
 | 
						||
First transform 
 | 
						||
\begin_inset Formula $p$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 back to the world frame, apply 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and then rotate back:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
q=Re^{\Skew{\omega}}R^{T}p
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Enumerate
 | 
						||
Immediately apply the transformed axis-angle transformation 
 | 
						||
\begin_inset Formula $\Ad R{\Skew{\omega}}=\Skew{R\omega}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
q=e^{\Skew{R\omega}}p
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Actions
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
In the case of 
 | 
						||
\begin_inset Formula $\SOthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 the vector space is  
 | 
						||
\begin_inset Formula $\Rthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and the group action corresponds to rotating a point
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
q=Rp
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
We would now like to know what an incremental rotation parameterized by
 | 
						||
 
 | 
						||
\begin_inset Formula $\omega$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 would do:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
q(\omega)=Re^{\Skew{\omega}}p
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
hence the derivative is:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)=R\deriv{}{\omega}\left(\Skew{\omega}p\right)=R\Skew{-p}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
To show the last equality note that 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Newpage pagebreak
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Section
 | 
						||
3D Rigid Transformations
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The Lie group 
 | 
						||
\begin_inset Formula $\SEthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a subgroup of the general linear group 
 | 
						||
\begin_inset Formula $GL(4)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 of 
 | 
						||
\begin_inset Formula $4\times4$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 invertible matrices of the form
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T\define\left[\begin{array}{cc}
 | 
						||
R & t\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where 
 | 
						||
\begin_inset Formula $R\in\SOthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a rotation matrix and 
 | 
						||
\begin_inset Formula $t\in\Rthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a translation vector.
 | 
						||
 An alternative way of writing down elements of 
 | 
						||
\begin_inset Formula $\SEthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is as the ordered pair 
 | 
						||
\begin_inset Formula $(R,\,t)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, with composition defined as
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
(R_{1},\,t_{1})(R_{2},\,t_{2})=(R_{1}R_{2},\,R{}_{1}t_{2}+t_{1})
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 Its Lie algebra 
 | 
						||
\begin_inset Formula $\sethree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is the vector space of 
 | 
						||
\begin_inset Formula $4\times4$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 twists 
 | 
						||
\begin_inset Formula $\xihat$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 parameterized by the 
 | 
						||
\emph on
 | 
						||
twist coordinates
 | 
						||
\emph default
 | 
						||
 
 | 
						||
\begin_inset Formula $\xi\in\Rsix$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, with the mapping 
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
key "Murray94book"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\xi\define\left[\begin{array}{c}
 | 
						||
\omega\\
 | 
						||
v
 | 
						||
\end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc}
 | 
						||
\Skew{\omega} & v\\
 | 
						||
0 & 0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Note we follow Frank Park's convention and reserve the first three components
 | 
						||
 for rotation, and the last three for translation.
 | 
						||
 Hence, with this parameterization, the generators for 
 | 
						||
\begin_inset Formula $\SEthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 are
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{1}=\left(\begin{array}{cccc}
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & -1 & 0\\
 | 
						||
0 & 1 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
 | 
						||
0 & 0 & 1 & 0\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
-1 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
 | 
						||
0 & -1 & 0 & 0\\
 | 
						||
1 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{4}=\left(\begin{array}{cccc}
 | 
						||
0 & 0 & 0 & 1\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 1\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 1\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Applying the exponential map to a twist 
 | 
						||
\begin_inset Formula $\xi$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 yields a screw motion yielding an element in 
 | 
						||
\begin_inset Formula $\SEthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
: 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T=\exp\xihat
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
A closed form solution for the exponential map is given in 
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
after "page 42"
 | 
						||
key "Murray94book"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
 | 
						||
\family roman
 | 
						||
\series medium
 | 
						||
\shape up
 | 
						||
\size normal
 | 
						||
\emph off
 | 
						||
\bar no
 | 
						||
\noun off
 | 
						||
\color none
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\exp\left(\widehat{\left[\begin{array}{c}
 | 
						||
\omega\\
 | 
						||
v
 | 
						||
\end{array}\right]}t\right)=\left[\begin{array}{cc}
 | 
						||
e^{\Skew{\omega}t} & (I-e^{\Skew{\omega}t})\left(\omega\times v\right)+\omega\omega^{T}vt\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
The Adjoint Map
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The adjoint is 
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{eqnarray*}
 | 
						||
\Ad T{\xihat} & = & T\xihat T^{-1}\\
 | 
						||
 & = & \left[\begin{array}{cc}
 | 
						||
R & t\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
\Skew{\omega} & v\\
 | 
						||
0 & 0
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
R^{T} & -R^{T}t\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\\
 | 
						||
 & = & \left[\begin{array}{cc}
 | 
						||
\Skew{R\omega} & -\Skew{R\omega}t+Rv\\
 | 
						||
0 & 0
 | 
						||
\end{array}\right]\\
 | 
						||
 & = & \left[\begin{array}{cc}
 | 
						||
\Skew{R\omega} & t\times R\omega+Rv\\
 | 
						||
0 & 0
 | 
						||
\end{array}\right]
 | 
						||
\end{eqnarray*}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
From this we can express the Adjoint map in terms of twist coordinates (see
 | 
						||
 also 
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
key "Murray94book"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and FP):
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\left[\begin{array}{c}
 | 
						||
\omega'\\
 | 
						||
v'
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
R & 0\\
 | 
						||
\Skew tR & R
 | 
						||
\end{array}\right]\left[\begin{array}{c}
 | 
						||
\omega\\
 | 
						||
v
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Actions
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The action of 
 | 
						||
\begin_inset Formula $\SEthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 on 3D points is done by embedding the points in 
 | 
						||
\begin_inset Formula $\mathbb{R}^{4}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 by using homogeneous coordinates
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\hat{q}=\left[\begin{array}{c}
 | 
						||
q\\
 | 
						||
1
 | 
						||
\end{array}\right]=\left[\begin{array}{c}
 | 
						||
Rp+t\\
 | 
						||
1
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
R & t\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\left[\begin{array}{c}
 | 
						||
p\\
 | 
						||
1
 | 
						||
\end{array}\right]=T\hat{p}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
We would now like to know what an incremental pose parameterized by 
 | 
						||
\begin_inset Formula $\xi$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 would do:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\hat{q}(\xi)=Te^{\xihat}\hat{p}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
hence the derivative is
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where 
 | 
						||
\begin_inset Formula $\xihat\hat{p}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 corresponds to a velocity in 
 | 
						||
\begin_inset Formula $\mathbb{R}^{4}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 (in the local 
 | 
						||
\begin_inset Formula $T$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 frame): 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\xihat\hat{p}=\left[\begin{array}{cc}
 | 
						||
\Skew{\omega} & v\\
 | 
						||
0 & 0
 | 
						||
\end{array}\right]\left[\begin{array}{c}
 | 
						||
p\\
 | 
						||
1
 | 
						||
\end{array}\right]=\left[\begin{array}{c}
 | 
						||
\omega\times p+v\\
 | 
						||
0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Notice how velocities are analogous to points at infinity in projective
 | 
						||
 geometry: they correspond to free vectors indicating a direction and magnitude
 | 
						||
 of change.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
By only taking the top three rows, we can write this as a velocity in 
 | 
						||
\begin_inset Formula $\Rthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, as the product of a 
 | 
						||
\begin_inset Formula $3\times6$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 matrix 
 | 
						||
\begin_inset Formula $H_{p}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 that acts upon the exponential coordinates 
 | 
						||
\begin_inset Formula $\xi$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 directly:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\omega\times p+v=-p\times\omega+v=\left[\begin{array}{cc}
 | 
						||
-\Skew p & I_{3}\end{array}\right]\left[\begin{array}{c}
 | 
						||
\omega\\
 | 
						||
v
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
yielding the derivative
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)=T\left[\begin{array}{cc}
 | 
						||
-\Skew p & I_{3}\\
 | 
						||
0 & 0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
The inverse action 
 | 
						||
\begin_inset Formula $T^{-1}p$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\hat{q}=\left[\begin{array}{c}
 | 
						||
q\\
 | 
						||
1
 | 
						||
\end{array}\right]=\left[\begin{array}{c}
 | 
						||
R^{T}(p-t)\\
 | 
						||
1
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
R^{T} & -R^{T}t\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\left[\begin{array}{c}
 | 
						||
p\\
 | 
						||
1
 | 
						||
\end{array}\right]=T^{-1}\hat{p}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Newpage pagebreak
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Section
 | 
						||
3D Similarity Transformations
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The group of 3D similarity transformations 
 | 
						||
\begin_inset Formula $Sim(3)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is the set of 
 | 
						||
\begin_inset Formula $4\times4$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 invertible matrices of the form
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
T\define\left[\begin{array}{cc}
 | 
						||
R & t\\
 | 
						||
0 & s^{-1}
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where 
 | 
						||
\begin_inset Formula $s$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a scalar.
 | 
						||
 There are several different conventions in use for the Lie algebra generators,
 | 
						||
 but we use
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{1}=\left(\begin{array}{cccc}
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & -1 & 0\\
 | 
						||
0 & 1 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
 | 
						||
0 & 0 & 1 & 0\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
-1 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
 | 
						||
0 & -1 & 0 & 0\\
 | 
						||
1 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{4}=\left(\begin{array}{cccc}
 | 
						||
0 & 0 & 0 & 1\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 1\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 1\\
 | 
						||
0 & 0 & 0 & 0
 | 
						||
\end{array}\right)\mbox{ }G^{7}=\left(\begin{array}{cccc}
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & 0\\
 | 
						||
0 & 0 & 0 & -1
 | 
						||
\end{array}\right)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Actions
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The action of 
 | 
						||
\begin_inset Formula $\SEthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 on 3D points is done by embedding the points in 
 | 
						||
\begin_inset Formula $\mathbb{R}^{4}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 by using homogeneous coordinates
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\hat{q}=\left[\begin{array}{c}
 | 
						||
q\\
 | 
						||
s^{-1}
 | 
						||
\end{array}\right]=\left[\begin{array}{c}
 | 
						||
Rp+t\\
 | 
						||
s^{-1}
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
R & t\\
 | 
						||
0 & s^{-1}
 | 
						||
\end{array}\right]\left[\begin{array}{c}
 | 
						||
p\\
 | 
						||
1
 | 
						||
\end{array}\right]=T\hat{p}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
The derivative 
 | 
						||
\begin_inset Formula $D_{1}f(\xi)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 in an incremental change 
 | 
						||
\begin_inset Formula $\xi$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to 
 | 
						||
\begin_inset Formula $T$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is given by 
 | 
						||
\begin_inset Formula $TH(p)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 where 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
H(p)=G_{jk}^{i}p^{j}=\left(\begin{array}{ccccccc}
 | 
						||
0 & z & -y & 1 & 0 & 0 & 0\\
 | 
						||
-z & 0 & x & 0 & 1 & 0 & 0\\
 | 
						||
y & -x & 0 & 0 & 0 & 1 & 0\\
 | 
						||
0 & 0 & 0 & 0 & 0 & 0 & -1
 | 
						||
\end{array}\right)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
In other words
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
D_{1}f(\xi)=\left[\begin{array}{cc}
 | 
						||
R & t\\
 | 
						||
0 & s^{-1}
 | 
						||
\end{array}\right]\left[\begin{array}{ccc}
 | 
						||
-\left[p\right]_{x} & I_{3} & 0\\
 | 
						||
0 & 0 & -1
 | 
						||
\end{array}\right]=\left[\begin{array}{ccc}
 | 
						||
-R\left[p\right]_{x} & R & -t\\
 | 
						||
0 & 0 & -s^{-1}
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
This is the derivative for the action on homogeneous coordinates.
 | 
						||
 Switching back to non-homogeneous coordinates is done by
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\left[\begin{array}{c}
 | 
						||
q\\
 | 
						||
a
 | 
						||
\end{array}\right]\rightarrow q/a
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
with derivative
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\left[\begin{array}{cc}
 | 
						||
a^{-1}I_{3} & -qa^{-2}\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
For 
 | 
						||
\begin_inset Formula $a=s^{-1}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 we obtain
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
D_{1}f(\xi)=\left[\begin{array}{cc}
 | 
						||
sI_{3} & -qs^{2}\end{array}\right]\left[\begin{array}{ccc}
 | 
						||
-R\left[p\right]_{x} & R & -t\\
 | 
						||
0 & 0 & -s^{-1}
 | 
						||
\end{array}\right]=\left[\begin{array}{ccc}
 | 
						||
-sR\left[p\right]_{x} & sR & -st+qs\end{array}\right]=\left[\begin{array}{ccc}
 | 
						||
-sR\left[p\right]_{x} & sR & sRp\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Newpage pagebreak
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Section
 | 
						||
2D Affine Transformations
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The Lie group 
 | 
						||
\begin_inset Formula $Aff(2)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a subgroup of the general linear group 
 | 
						||
\begin_inset Formula $GL(3)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 of 
 | 
						||
\begin_inset Formula $3\times3$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 invertible matrices that maps the line infinity to itself, and hence preserves
 | 
						||
 paralellism.
 | 
						||
 The affine transformation matrices 
 | 
						||
\begin_inset Formula $A$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 can be written as 
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
key "Mei08tro"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\family roman
 | 
						||
\series medium
 | 
						||
\shape up
 | 
						||
\size normal
 | 
						||
\emph off
 | 
						||
\bar no
 | 
						||
\noun off
 | 
						||
\color none
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\left[\begin{array}{ccc}
 | 
						||
m_{11} & m_{12} & t_{1}\\
 | 
						||
m_{21} & m_{22} & t_{2}\\
 | 
						||
0 & 0 & k
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
with 
 | 
						||
\begin_inset Formula $M\in GL(2)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, 
 | 
						||
\begin_inset Formula $t\in\Rtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and 
 | 
						||
\begin_inset Formula $k$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 a scalar chosen such that 
 | 
						||
\begin_inset Formula $det(A)=1$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 
 | 
						||
\family default
 | 
						||
\series default
 | 
						||
\shape default
 | 
						||
\size default
 | 
						||
\emph default
 | 
						||
\bar default
 | 
						||
\noun default
 | 
						||
\color inherit
 | 
						||
Note that just as 
 | 
						||
\begin_inset Formula $\SEtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a semi-direct product, so too is 
 | 
						||
\begin_inset Formula $Aff(2)=\Rtwo\rtimes GL(2)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 In particular, any affine transformation 
 | 
						||
\begin_inset Formula $A$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 can be written as
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
A=\left[\begin{array}{cc}
 | 
						||
0 & t\\
 | 
						||
0 & 1
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
M & 0\\
 | 
						||
0 & k
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
and they compose as
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
A_{1}A_{2}=\left[\begin{array}{cc}
 | 
						||
M_{1} & t_{1}\\
 | 
						||
0 & k_{1}
 | 
						||
\end{array}\right]\left[\begin{array}{cc}
 | 
						||
M_{2} & t_{2}\\
 | 
						||
0 & k_{2}
 | 
						||
\end{array}\right]=\left[\begin{array}{cc}
 | 
						||
M_{1}M_{2} & M_{2}t_{2}+k_{2}t_{1}\\
 | 
						||
0 & k_{1}k_{2}
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
From this it can be gleaned that the groups 
 | 
						||
\begin_inset Formula $\SOtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $\SEtwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 are both subgroups, with 
 | 
						||
\begin_inset Formula $\SOtwo\subset\SEtwo\subset\Afftwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 
 | 
						||
\family roman
 | 
						||
\series medium
 | 
						||
\shape up
 | 
						||
\size normal
 | 
						||
\emph off
 | 
						||
\bar no
 | 
						||
\noun off
 | 
						||
\color none
 | 
						||
By choosing the generators carefully we maintain this hierarchy among the
 | 
						||
 associated Lie algebras.
 | 
						||
 In particular, 
 | 
						||
\begin_inset Formula $\setwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{1}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 1\\
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 1\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc}
 | 
						||
0 & -1 & 0\\
 | 
						||
1 & 0 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
can be extended to the 
 | 
						||
\family default
 | 
						||
\series default
 | 
						||
\shape default
 | 
						||
\size default
 | 
						||
\emph default
 | 
						||
\bar default
 | 
						||
\noun default
 | 
						||
\color inherit
 | 
						||
Lie algebra
 | 
						||
\family roman
 | 
						||
\series medium
 | 
						||
\shape up
 | 
						||
\size normal
 | 
						||
\emph off
 | 
						||
\bar no
 | 
						||
\noun off
 | 
						||
\color none
 | 
						||
 
 | 
						||
\begin_inset Formula $\afftwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 using the three additional generators
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{4}=\left[\begin{array}{ccc}
 | 
						||
0 & 1 & 0\\
 | 
						||
1 & 0 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc}
 | 
						||
1 & 0 & 0\\
 | 
						||
0 & -1 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & -1 & 0\\
 | 
						||
0 & 0 & 1
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\family default
 | 
						||
\series default
 | 
						||
\shape default
 | 
						||
\size default
 | 
						||
\emph default
 | 
						||
\bar default
 | 
						||
\noun default
 | 
						||
\color inherit
 | 
						||
Hence, the Lie algebra 
 | 
						||
\begin_inset Formula $\afftwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is the vector space of 
 | 
						||
\begin_inset Formula $3\times3$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 incremental affine transformations 
 | 
						||
\begin_inset Formula $\ahat$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 parameterized by 6 parameters 
 | 
						||
\begin_inset Formula $\aa\in\mathbb{R}^{6}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, with the mapping 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\aa\rightarrow\ahat\define\left[\begin{array}{ccc}
 | 
						||
a_{5} & a_{4}-a_{3} & a_{1}\\
 | 
						||
a_{4}+a_{3} & -a_{5}-a_{6} & a_{2}\\
 | 
						||
0 & 0 & a_{6}
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Note that 
 | 
						||
\begin_inset Formula $G_{5}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $G_{6}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 change the relative scale of 
 | 
						||
\begin_inset Formula $x$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $y$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 but without changing the determinant: 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
e^{xG_{5}}=\exp\left[\begin{array}{ccc}
 | 
						||
x & 0 & 0\\
 | 
						||
0 & -x & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]=\left[\begin{array}{ccc}
 | 
						||
e^{x} & 0 & 0\\
 | 
						||
0 & 1/e^{x} & 0\\
 | 
						||
0 & 0 & 1
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
e^{xG_{6}}=\exp\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & -x & 0\\
 | 
						||
0 & 0 & x
 | 
						||
\end{array}\right]=\left[\begin{array}{ccc}
 | 
						||
1 & 0 & 0\\
 | 
						||
0 & 1/e^{x} & 0\\
 | 
						||
0 & 0 & e^{x}
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
It might be nicer to have the correspondence with scaling 
 | 
						||
\begin_inset Formula $x$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $y$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 more direct, by choosing
 | 
						||
\family roman
 | 
						||
\series medium
 | 
						||
\shape up
 | 
						||
\size normal
 | 
						||
\emph off
 | 
						||
\bar no
 | 
						||
\noun off
 | 
						||
\color none
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
\mbox{ }G^{5}=\left[\begin{array}{ccc}
 | 
						||
1 & 0 & 0\\
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & -1
 | 
						||
\end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 1 & 0\\
 | 
						||
0 & 0 & -1
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
and hence
 | 
						||
\family default
 | 
						||
\series default
 | 
						||
\shape default
 | 
						||
\size default
 | 
						||
\emph default
 | 
						||
\bar default
 | 
						||
\noun default
 | 
						||
\color inherit
 | 
						||
 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
e^{xG_{5}}=\exp\left[\begin{array}{ccc}
 | 
						||
x & 0 & 0\\
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & -x
 | 
						||
\end{array}\right]=\left[\begin{array}{ccc}
 | 
						||
e^{x} & 0 & 0\\
 | 
						||
0 & 1 & 0\\
 | 
						||
0 & 0 & 1/e^{x}
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
e^{xG_{6}}=\exp\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & x & 0\\
 | 
						||
0 & 0 & -x
 | 
						||
\end{array}\right]=\left[\begin{array}{ccc}
 | 
						||
1 & 0 & 0\\
 | 
						||
0 & e^{x} & 0\\
 | 
						||
0 & 0 & 1/e^{x}
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Section
 | 
						||
2D Homographies
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
When viewed as operations on images, represented by 2D projective space
 | 
						||
 
 | 
						||
\begin_inset Formula $\mathcal{P}^{3}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, 3D rotations are a special case of 2D homographies.
 | 
						||
 These are now treated, loosely based on the exposition in 
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
key "Mei06iros,Mei08tro"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Basics
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
The Lie group 
 | 
						||
\begin_inset Formula $\SLthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 is a subgroup of the general linear group 
 | 
						||
\begin_inset Formula $GL(3)$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 of 
 | 
						||
\begin_inset Formula $3\times3$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 invertible matrices with determinant 
 | 
						||
\begin_inset Formula $1$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 The homographies generalize transformations of the 2D projective space,
 | 
						||
 and 
 | 
						||
\begin_inset Formula $\Afftwo\subset\SLthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
 | 
						||
\family roman
 | 
						||
\series medium
 | 
						||
\shape up
 | 
						||
\size normal
 | 
						||
\emph off
 | 
						||
\bar no
 | 
						||
\noun off
 | 
						||
\color none
 | 
						||
We can extend 
 | 
						||
\begin_inset Formula $\afftwo$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to the Lie algebra 
 | 
						||
\begin_inset Formula $\slthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 by adding two generators
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{7}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 0\\
 | 
						||
1 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 1 & 0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\family default
 | 
						||
\series default
 | 
						||
\shape default
 | 
						||
\size default
 | 
						||
\emph default
 | 
						||
\bar default
 | 
						||
\noun default
 | 
						||
\color inherit
 | 
						||
obtaining the vector space of 
 | 
						||
\begin_inset Formula $3\times3$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 incremental homographies 
 | 
						||
\begin_inset Formula $\hhat$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 parameterized by 8 parameters 
 | 
						||
\begin_inset Formula $\hh\in\mathbb{R}^{8}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, with the mapping 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
h\rightarrow\hhat\define\left[\begin{array}{ccc}
 | 
						||
h_{5} & h_{4}-h_{3} & h_{1}\\
 | 
						||
h_{4}+h_{3} & -h_{5}-h_{6} & h_{2}\\
 | 
						||
h_{7} & h_{8} & h_{6}
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
Tensor Notation
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Itemize
 | 
						||
A homography between 2D projective spaces 
 | 
						||
\begin_inset Formula $A$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 and 
 | 
						||
\begin_inset Formula $B$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 can be written in tensor notation 
 | 
						||
\begin_inset Formula $H_{A}^{B}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Itemize
 | 
						||
Applying a homography is then a tensor contraction 
 | 
						||
\begin_inset Formula $x^{B}=H_{A}^{B}x^{A}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, mapping points in 
 | 
						||
\begin_inset Formula $A$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 to points in 
 | 
						||
\begin_inset Formula $B$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Note Note
 | 
						||
status collapsed
 | 
						||
 | 
						||
\begin_layout Plain Layout
 | 
						||
The inverse of a homography can be found by contracting with two permutation
 | 
						||
 tensors:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
H_{B}^{A}=H_{A_{1}}^{B_{1}}H_{A_{2}}^{B_{2}}\epsilon_{B_{1}B_{2}B}\epsilon^{A_{1}A_{2}A}
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Note Note
 | 
						||
status collapsed
 | 
						||
 | 
						||
\begin_layout Subsection
 | 
						||
The Adjoint Map
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Plain Layout
 | 
						||
The adjoint can be done using tensor notation.
 | 
						||
 Denoting an incremental homography in space 
 | 
						||
\begin_inset Formula $A$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 as 
 | 
						||
\begin_inset Formula $\hhat_{A_{1}}^{A_{2}}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, we have, for example for 
 | 
						||
\begin_inset Formula $G_{1}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{eqnarray*}
 | 
						||
\hhat_{B_{1}}^{B_{2}}=\Ad{H_{A}^{B}}{\hhat_{A_{1}}^{A_{2}}} & = & H_{A_{2}}^{B_{2}}\hhat_{A_{1}}^{A_{2}}H_{B_{1}}^{A_{1}}\\
 | 
						||
 & = & H_{A_{2}}^{B_{2}}\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 1\\
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{A_{1}A_{2}A_{3}}\\
 | 
						||
 & = & H_{1}^{B_{2}}H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{3A_{2}A_{3}}
 | 
						||
\end{eqnarray*}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
This does not seem to help.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset Newpage pagebreak
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Section*
 | 
						||
Appendix: Proof of Property 
 | 
						||
\begin_inset CommandInset ref
 | 
						||
LatexCommand ref
 | 
						||
reference "proof1"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
We can prove the following identity for rotation matrices 
 | 
						||
\begin_inset Formula $R$
 | 
						||
\end_inset
 | 
						||
 | 
						||
,
 | 
						||
\begin_inset Formula 
 | 
						||
\begin{eqnarray}
 | 
						||
R\Skew{\omega}R^{T} & = & R\Skew{\omega}\left[\begin{array}{ccc}
 | 
						||
a_{1} & a_{2} & a_{3}\end{array}\right]\nonumber \\
 | 
						||
 & = & R\left[\begin{array}{ccc}
 | 
						||
\omega\times a_{1} & \omega\times a_{2} & \omega\times a_{3}\end{array}\right]\nonumber \\
 | 
						||
 & = & \left[\begin{array}{ccc}
 | 
						||
a_{1}(\omega\times a_{1}) & a_{1}(\omega\times a_{2}) & a_{1}(\omega\times a_{3})\\
 | 
						||
a_{2}(\omega\times a_{1}) & a_{2}(\omega\times a_{2}) & a_{2}(\omega\times a_{3})\\
 | 
						||
a_{3}(\omega\times a_{1}) & a_{3}(\omega\times a_{2}) & a_{3}(\omega\times a_{3})
 | 
						||
\end{array}\right]\nonumber \\
 | 
						||
 & = & \left[\begin{array}{ccc}
 | 
						||
\omega(a_{1}\times a_{1}) & \omega(a_{2}\times a_{1}) & \omega(a_{3}\times a_{1})\\
 | 
						||
\omega(a_{1}\times a_{2}) & \omega(a_{2}\times a_{2}) & \omega(a_{3}\times a_{2})\\
 | 
						||
\omega(a_{1}\times a_{3}) & \omega(a_{2}\times a_{3}) & \omega(a_{3}\times a_{3})
 | 
						||
\end{array}\right]\nonumber \\
 | 
						||
 & = & \left[\begin{array}{ccc}
 | 
						||
0 & -\omega a_{3} & \omega a_{2}\\
 | 
						||
\omega a_{3} & 0 & -\omega a_{1}\\
 | 
						||
-\omega a_{2} & \omega a_{1} & 0
 | 
						||
\end{array}\right]\nonumber \\
 | 
						||
 & = & \Skew{R\omega}\label{proof1}
 | 
						||
\end{eqnarray}
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
where 
 | 
						||
\begin_inset Formula $a_{1}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, 
 | 
						||
\begin_inset Formula $a_{2}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
, and 
 | 
						||
\begin_inset Formula $a_{3}$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 are the 
 | 
						||
\emph on
 | 
						||
rows
 | 
						||
\emph default
 | 
						||
 of 
 | 
						||
\begin_inset Formula $R$
 | 
						||
\end_inset
 | 
						||
 | 
						||
.
 | 
						||
 Above we made use of the orthogonality of rotation matrices and the triple
 | 
						||
 product rule:
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
a(b\times c)=b(c\times a)=c(a\times b)
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
Similarly, without proof 
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
after "Lemma 2.3"
 | 
						||
key "Murray94book"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
: 
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
R(a\times b)=Ra\times Rb
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Section*
 | 
						||
Appendix: Alternative Generators for 
 | 
						||
\begin_inset Formula $\slthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset CommandInset citation
 | 
						||
LatexCommand cite
 | 
						||
key "Mei06iros"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 uses the following generators for 
 | 
						||
\begin_inset Formula $\slthree$
 | 
						||
\end_inset
 | 
						||
 | 
						||
:
 | 
						||
\family roman
 | 
						||
\series medium
 | 
						||
\shape up
 | 
						||
\size normal
 | 
						||
\emph off
 | 
						||
\bar no
 | 
						||
\noun off
 | 
						||
\color none
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{1}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 1\\
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 1\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc}
 | 
						||
0 & 1 & 0\\
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{4}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
1 & 0 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc}
 | 
						||
1 & 0 & 0\\
 | 
						||
0 & -1 & 0\\
 | 
						||
0 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & -1 & 0\\
 | 
						||
0 & 0 & 1
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\begin_inset Formula 
 | 
						||
\[
 | 
						||
G^{7}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 0\\
 | 
						||
1 & 0 & 0
 | 
						||
\end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc}
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 0 & 0\\
 | 
						||
0 & 1 & 0
 | 
						||
\end{array}\right]
 | 
						||
\]
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\family default
 | 
						||
\series default
 | 
						||
\shape default
 | 
						||
\size default
 | 
						||
\emph default
 | 
						||
\bar default
 | 
						||
\noun default
 | 
						||
\color inherit
 | 
						||
We choose to use a different linear combination as the basis.
 | 
						||
\end_layout
 | 
						||
 | 
						||
\begin_layout Standard
 | 
						||
\begin_inset CommandInset bibtex
 | 
						||
LatexCommand bibtex
 | 
						||
bibfiles "../../../papers/refs"
 | 
						||
options "plain"
 | 
						||
 | 
						||
\end_inset
 | 
						||
 | 
						||
 | 
						||
\end_layout
 | 
						||
 | 
						||
\end_body
 | 
						||
\end_document
 |