gtsam/cython/gtsam/utils/logging_optimizer.py

53 lines
2.1 KiB
Python

"""
Optimization with logging via a hook.
Author: Jing Wu and Frank Dellaert
"""
# pylint: disable=invalid-name
from gtsam import NonlinearOptimizer, NonlinearOptimizerParams
import gtsam
def optimize(optimizer, check_convergence, hook):
""" Given an optimizer and a convergence check, iterate until convergence.
After each iteration, hook(optimizer, error) is called.
After the function, use values and errors to get the result.
Arguments:
optimizer (T): needs an iterate and an error function.
check_convergence: T * float * float -> bool
hook -- hook function to record the error
"""
# the optimizer is created with default values which incur the error below
current_error = optimizer.error()
hook(optimizer, current_error)
# Iterative loop
while True:
# Do next iteration
optimizer.iterate()
new_error = optimizer.error()
hook(optimizer, new_error)
if check_convergence(optimizer, current_error, new_error):
return
current_error = new_error
def gtsam_optimize(optimizer,
params,
hook):
""" Given an optimizer and params, iterate until convergence.
After each iteration, hook(optimizer) is called.
After the function, use values and errors to get the result.
Arguments:
optimizer {NonlinearOptimizer} -- Nonlinear optimizer
params {NonlinearOptimizarParams} -- Nonlinear optimizer parameters
hook -- hook function to record the error
"""
def check_convergence(optimizer, current_error, new_error):
return (optimizer.iterations() >= params.getMaxIterations()) or (
gtsam.checkConvergence(params.getRelativeErrorTol(), params.getAbsoluteErrorTol(), params.getErrorTol(),
current_error, new_error)) or (
isinstance(optimizer, gtsam.LevenbergMarquardtOptimizer) and optimizer.lambda_() > params.getlambdaUpperBound())
optimize(optimizer, check_convergence, hook)
return optimizer.values()