gtsam/python/gtsam/tests/test_Triangulation.py

277 lines
12 KiB
Python

"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Test Triangulation
Authors: Frank Dellaert & Fan Jiang (Python) & Sushmita Warrier & John Lambert
"""
# pylint: disable=no-name-in-module, invalid-name, no-member
import unittest
from typing import Iterable, List, Optional, Tuple, Union
import numpy as np
import gtsam
from gtsam import (Cal3_S2, Cal3Bundler, CameraSetCal3_S2,
CameraSetCal3Bundler, PinholeCameraCal3_S2,
PinholeCameraCal3Bundler, Point2, Point2Vector, Point3,
Pose3, Pose3Vector, Rot3, TriangulationParameters,
TriangulationResult)
from gtsam.utils.test_case import GtsamTestCase
UPRIGHT = Rot3.Ypr(-np.pi / 2, 0.0, -np.pi / 2)
class TestTriangulationExample(GtsamTestCase):
"""Tests for triangulation with shared and individual calibrations"""
def setUp(self):
"""Set up two camera poses"""
# Looking along X-axis, 1 meter above ground plane (x-y)
pose1 = Pose3(UPRIGHT, Point3(0, 0, 1))
# create second camera 1 meter to the right of first camera
pose2 = pose1.compose(Pose3(Rot3(), Point3(1, 0, 0)))
# twoPoses
self.poses = Pose3Vector()
self.poses.append(pose1)
self.poses.append(pose2)
# landmark ~5 meters infront of camera
self.landmark = Point3(5, 0.5, 1.2)
def generate_measurements(
self,
calibration: Union[Cal3Bundler, Cal3_S2],
camera_model: Union[PinholeCameraCal3Bundler, PinholeCameraCal3_S2],
cal_params: Iterable[Iterable[Union[int, float]]],
camera_set: Optional[Union[CameraSetCal3Bundler,
CameraSetCal3_S2]] = None,
) -> Tuple[Point2Vector, Union[CameraSetCal3Bundler, CameraSetCal3_S2,
List[Cal3Bundler], List[Cal3_S2]]]:
"""
Generate vector of measurements for given calibration and camera model.
Args:
calibration: Camera calibration e.g. Cal3_S2
camera_model: Camera model e.g. PinholeCameraCal3_S2
cal_params: Iterable of camera parameters for `calibration` e.g. [K1, K2]
camera_set: Cameraset object (for individual calibrations)
Returns:
list of measurements and list/CameraSet object for cameras
"""
if camera_set is not None:
cameras = camera_set()
else:
cameras = []
measurements = Point2Vector()
for k, pose in zip(cal_params, self.poses):
K = calibration(*k)
camera = camera_model(pose, K)
cameras.append(camera)
z = camera.project(self.landmark)
measurements.append(z)
return measurements, cameras
def test_TriangulationExample(self) -> None:
"""Tests triangulation with shared Cal3_S2 calibration"""
# Some common constants
sharedCal = (1500, 1200, 0, 640, 480)
measurements, _ = self.generate_measurements(
calibration=Cal3_S2,
camera_model=PinholeCameraCal3_S2,
cal_params=(sharedCal, sharedCal))
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
Cal3_S2(sharedCal),
measurements,
rank_tol=1e-9,
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
# Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
measurements_noisy = Point2Vector()
measurements_noisy.append(measurements[0] - np.array([0.1, 0.5]))
measurements_noisy.append(measurements[1] - np.array([-0.2, 0.3]))
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
Cal3_S2(sharedCal),
measurements_noisy,
rank_tol=1e-9,
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-2)
def test_distinct_Ks(self) -> None:
"""Tests triangulation with individual Cal3_S2 calibrations"""
# two camera parameters
K1 = (1500, 1200, 0, 640, 480)
K2 = (1600, 1300, 0, 650, 440)
measurements, cameras = self.generate_measurements(
calibration=Cal3_S2,
camera_model=PinholeCameraCal3_S2,
cal_params=(K1, K2),
camera_set=CameraSetCal3_S2)
triangulated_landmark = gtsam.triangulatePoint3(cameras,
measurements,
rank_tol=1e-9,
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
def test_distinct_Ks_Bundler(self) -> None:
"""Tests triangulation with individual Cal3Bundler calibrations"""
# two camera parameters
K1 = (1500, 0, 0, 640, 480)
K2 = (1600, 0, 0, 650, 440)
measurements, cameras = self.generate_measurements(
calibration=Cal3Bundler,
camera_model=PinholeCameraCal3Bundler,
cal_params=(K1, K2),
camera_set=CameraSetCal3Bundler)
triangulated_landmark = gtsam.triangulatePoint3(cameras,
measurements,
rank_tol=1e-9,
optimize=True)
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
def test_triangulation_robust_three_poses(self) -> None:
"""Ensure triangulation with a robust model works."""
sharedCal = Cal3_S2(1500, 1200, 0, 640, 480)
# landmark ~5 meters infront of camera
landmark = Point3(5, 0.5, 1.2)
pose1 = Pose3(UPRIGHT, Point3(0, 0, 1))
pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0))
pose3 = pose1 * Pose3(Rot3.Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -0.1))
camera1 = PinholeCameraCal3_S2(pose1, sharedCal)
camera2 = PinholeCameraCal3_S2(pose2, sharedCal)
camera3 = PinholeCameraCal3_S2(pose3, sharedCal)
z1: Point2 = camera1.project(landmark)
z2: Point2 = camera2.project(landmark)
z3: Point2 = camera3.project(landmark)
poses = gtsam.Pose3Vector([pose1, pose2, pose3])
measurements = Point2Vector([z1, z2, z3])
# noise free, so should give exactly the landmark
actual = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=False)
self.assertTrue(np.allclose(landmark, actual, atol=1e-2))
# Add outlier
measurements[0] += Point2(100, 120) # very large pixel noise!
# now estimate does not match landmark
actual2 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=False)
# DLT is surprisingly robust, but still off (actual error is around 0.26m)
self.assertTrue(np.linalg.norm(landmark - actual2) >= 0.2)
self.assertTrue(np.linalg.norm(landmark - actual2) <= 0.5)
# Again with nonlinear optimization
actual3 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=True)
# result from nonlinear (but non-robust optimization) is close to DLT and still off
self.assertTrue(np.allclose(actual2, actual3, atol=0.1))
# Again with nonlinear optimization, this time with robust loss
model = gtsam.noiseModel.Robust.Create(
gtsam.noiseModel.mEstimator.Huber.Create(1.345),
gtsam.noiseModel.Unit.Create(2))
actual4 = gtsam.triangulatePoint3(poses,
sharedCal,
measurements,
rank_tol=1e-9,
optimize=True,
model=model)
# using the Huber loss we now have a quite small error!! nice!
self.assertTrue(np.allclose(landmark, actual4, atol=0.05))
def test_outliers_and_far_landmarks(self) -> None:
"""Check safe triangulation function."""
pose1, pose2 = self.poses
K1 = Cal3_S2(1500, 1200, 0, 640, 480)
# create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
camera1 = PinholeCameraCal3_S2(pose1, K1)
# create second camera 1 meter to the right of first camera
K2 = Cal3_S2(1600, 1300, 0, 650, 440)
camera2 = PinholeCameraCal3_S2(pose2, K2)
# 1. Project two landmarks into two cameras and triangulate
z1 = camera1.project(self.landmark)
z2 = camera2.project(self.landmark)
cameras = CameraSetCal3_S2()
measurements = Point2Vector()
cameras.append(camera1)
cameras.append(camera2)
measurements.append(z1)
measurements.append(z2)
landmarkDistanceThreshold = 10 # landmark is closer than that
# all default except landmarkDistanceThreshold:
params = TriangulationParameters(1.0, False, landmarkDistanceThreshold)
actual: TriangulationResult = gtsam.triangulateSafe(
cameras, measurements, params)
self.gtsamAssertEquals(actual.get(), self.landmark, 1e-2)
self.assertTrue(actual.valid())
landmarkDistanceThreshold = 4 # landmark is farther than that
params2 = TriangulationParameters(
1.0, False, landmarkDistanceThreshold)
actual = gtsam.triangulateSafe(cameras, measurements, params2)
self.assertTrue(actual.farPoint())
# 3. Add a slightly rotated third camera above with a wrong measurement
# (OUTLIER)
pose3 = pose1 * Pose3(Rot3.Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1))
K3 = Cal3_S2(700, 500, 0, 640, 480)
camera3 = PinholeCameraCal3_S2(pose3, K3)
z3 = camera3.project(self.landmark)
cameras.append(camera3)
measurements.append(z3 + Point2(10, -10))
landmarkDistanceThreshold = 10 # landmark is closer than that
outlierThreshold = 100 # loose, the outlier is going to pass
params3 = TriangulationParameters(1.0, False, landmarkDistanceThreshold,
outlierThreshold)
actual = gtsam.triangulateSafe(cameras, measurements, params3)
self.assertTrue(actual.valid())
# now set stricter threshold for outlier rejection
outlierThreshold = 5 # tighter, the outlier is not going to pass
params4 = TriangulationParameters(1.0, False, landmarkDistanceThreshold,
outlierThreshold)
actual = gtsam.triangulateSafe(cameras, measurements, params4)
self.assertTrue(actual.outlier())
if __name__ == "__main__":
unittest.main()