228 lines
6.9 KiB
C++
228 lines
6.9 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testGaussianFactor.cpp
|
|
* @brief Unit tests for Linear Factor
|
|
* @author Christian Potthast
|
|
* @author Frank Dellaert
|
|
**/
|
|
|
|
#include <tests/smallExample.h>
|
|
#include <gtsam/nonlinear/Symbol.h>
|
|
#include <gtsam/nonlinear/Ordering.h>
|
|
#include <gtsam/linear/GaussianConditional.h>
|
|
#include <gtsam/base/Matrix.h>
|
|
#include <gtsam/base/Testable.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
#include <boost/assign/std/set.hpp>
|
|
#include <boost/assign/std/map.hpp> // for insert
|
|
using namespace boost::assign;
|
|
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// Convenience for named keys
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
|
|
static SharedDiagonal
|
|
sigma0_1 = noiseModel::Isotropic::Sigma(2,0.1), sigma_02 = noiseModel::Isotropic::Sigma(2,0.2),
|
|
constraintModel = noiseModel::Constrained::All(2);
|
|
|
|
//const Key kx1 = X(1), kx2 = X(2), kl1 = L(1); // FIXME: throws exception
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, linearFactor )
|
|
{
|
|
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
|
|
Ordering ordering; ordering += kx1,kx2,kl1;
|
|
|
|
Matrix I = eye(2);
|
|
Vector b = Vector_(2, 2.0, -1.0);
|
|
JacobianFactor expected(ordering[kx1], -10*I,ordering[kx2], 10*I, b, noiseModel::Unit::Create(2));
|
|
|
|
// create a small linear factor graph
|
|
FactorGraph<JacobianFactor> fg = example::createGaussianFactorGraph(ordering);
|
|
|
|
// get the factor kf2 from the factor graph
|
|
JacobianFactor::shared_ptr lf = fg[1];
|
|
|
|
// check if the two factors are the same
|
|
EXPECT(assert_equal(expected,*lf));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, getDim )
|
|
{
|
|
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
|
|
// get a factor
|
|
Ordering ordering; ordering += kx1,kx2,kl1;
|
|
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
|
|
GaussianFactor::shared_ptr factor = fg[0];
|
|
|
|
// get the size of a variable
|
|
size_t actual = factor->getDim(factor->find(ordering[kx1]));
|
|
|
|
// verify
|
|
size_t expected = 2;
|
|
EXPECT_LONGS_EQUAL(expected, actual);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, error )
|
|
{
|
|
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
|
|
// create a small linear factor graph
|
|
Ordering ordering; ordering += kx1,kx2,kl1;
|
|
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
|
|
|
|
// get the first factor from the factor graph
|
|
GaussianFactor::shared_ptr lf = fg[0];
|
|
|
|
// check the error of the first factor with noisy config
|
|
VectorValues cfg = example::createZeroDelta(ordering);
|
|
|
|
// calculate the error from the factor kf1
|
|
// note the error is the same as in testNonlinearFactor
|
|
double actual = lf->error(cfg);
|
|
DOUBLES_EQUAL( 1.0, actual, 0.00000001 );
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, matrix )
|
|
{
|
|
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
|
|
// create a small linear factor graph
|
|
Ordering ordering; ordering += kx1,kx2,kl1;
|
|
FactorGraph<JacobianFactor> fg = example::createGaussianFactorGraph(ordering);
|
|
|
|
// get the factor kf2 from the factor graph
|
|
//GaussianFactor::shared_ptr lf = fg[1]; // NOTE: using the older version
|
|
Vector b2 = Vector_(2, 0.2, -0.1);
|
|
Matrix I = eye(2);
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += kx1,kx2;
|
|
JacobianFactor::shared_ptr lf(new JacobianFactor(ord[kx1], -I, ord[kx2], I, b2, sigma0_1));
|
|
|
|
// Test whitened version
|
|
Matrix A_act1; Vector b_act1;
|
|
boost::tie(A_act1,b_act1) = lf->matrix(true);
|
|
|
|
Matrix A1 = Matrix_(2,4,
|
|
-10.0, 0.0, 10.0, 0.0,
|
|
000.0,-10.0, 0.0, 10.0 );
|
|
Vector b1 = Vector_(2, 2.0, -1.0);
|
|
|
|
EQUALITY(A_act1,A1);
|
|
EQUALITY(b_act1,b1);
|
|
|
|
// Test unwhitened version
|
|
Matrix A_act2; Vector b_act2;
|
|
boost::tie(A_act2,b_act2) = lf->matrix(false);
|
|
|
|
|
|
Matrix A2 = Matrix_(2,4,
|
|
-1.0, 0.0, 1.0, 0.0,
|
|
000.0,-1.0, 0.0, 1.0 );
|
|
//Vector b2 = Vector_(2, 2.0, -1.0);
|
|
|
|
EQUALITY(A_act2,A2);
|
|
EQUALITY(b_act2,b2);
|
|
|
|
// Ensure that whitening is consistent
|
|
boost::shared_ptr<noiseModel::Gaussian> model = lf->get_model();
|
|
model->WhitenSystem(A_act2, b_act2);
|
|
EQUALITY(A_act1, A_act2);
|
|
EQUALITY(b_act1, b_act2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, matrix_aug )
|
|
{
|
|
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
|
|
// create a small linear factor graph
|
|
Ordering ordering; ordering += kx1,kx2,kl1;
|
|
FactorGraph<JacobianFactor> fg = example::createGaussianFactorGraph(ordering);
|
|
|
|
// get the factor kf2 from the factor graph
|
|
//GaussianFactor::shared_ptr lf = fg[1];
|
|
Vector b2 = Vector_(2, 0.2, -0.1);
|
|
Matrix I = eye(2);
|
|
// render with a given ordering
|
|
Ordering ord;
|
|
ord += kx1,kx2;
|
|
JacobianFactor::shared_ptr lf(new JacobianFactor(ord[kx1], -I, ord[kx2], I, b2, sigma0_1));
|
|
|
|
|
|
// Test unwhitened version
|
|
Matrix Ab_act1;
|
|
Ab_act1 = lf->matrix_augmented(false);
|
|
|
|
Matrix Ab1 = Matrix_(2,5,
|
|
-1.0, 0.0, 1.0, 0.0, 0.2,
|
|
00.0,- 1.0, 0.0, 1.0, -0.1 );
|
|
|
|
EQUALITY(Ab_act1,Ab1);
|
|
|
|
// Test whitened version
|
|
Matrix Ab_act2;
|
|
Ab_act2 = lf->matrix_augmented(true);
|
|
|
|
Matrix Ab2 = Matrix_(2,5,
|
|
-10.0, 0.0, 10.0, 0.0, 2.0,
|
|
00.0, -10.0, 0.0, 10.0, -1.0 );
|
|
|
|
EQUALITY(Ab_act2,Ab2);
|
|
|
|
// Ensure that whitening is consistent
|
|
boost::shared_ptr<noiseModel::Gaussian> model = lf->get_model();
|
|
model->WhitenInPlace(Ab_act1);
|
|
EQUALITY(Ab_act1, Ab_act2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// small aux. function to print out lists of anything
|
|
template<class T>
|
|
void print(const list<T>& i) {
|
|
copy(i.begin(), i.end(), ostream_iterator<T> (cout, ","));
|
|
cout << endl;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( GaussianFactor, size )
|
|
{
|
|
// create a linear factor graph
|
|
const Key kx1 = X(1), kx2 = X(2), kl1 = L(1);
|
|
Ordering ordering; ordering += kx1,kx2,kl1;
|
|
GaussianFactorGraph fg = example::createGaussianFactorGraph(ordering);
|
|
|
|
// get some factors from the graph
|
|
boost::shared_ptr<GaussianFactor> factor1 = fg[0];
|
|
boost::shared_ptr<GaussianFactor> factor2 = fg[1];
|
|
boost::shared_ptr<GaussianFactor> factor3 = fg[2];
|
|
|
|
EXPECT_LONGS_EQUAL(1, factor1->size());
|
|
EXPECT_LONGS_EQUAL(2, factor2->size());
|
|
EXPECT_LONGS_EQUAL(2, factor3->size());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|