gtsam/gtsam/symbolic/tests/testSymbolicBayesTree.cpp

737 lines
25 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* @file testSymbolicBayesTree.cpp
* @date sept 15, 2012
* @author Frank Dellaert
* @author Michael Kaess
* @author Viorela Ila
*/
#include <gtsam/inference/Symbol.h>
#include <gtsam/symbolic/SymbolicBayesNet.h>
#include <gtsam/symbolic/SymbolicBayesTree.h>
#include <gtsam/symbolic/tests/symbolicExampleGraphs.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/TestableAssertions.h>
#include <iterator>
#include <type_traits>
using namespace std;
using namespace gtsam;
using namespace gtsam::symbol_shorthand;
static bool debug = false;
// Given a vector of shared pointers infer the type of the pointed-to objects
template<typename T>
using PointedToType = std::decay_t<decltype(**declval<T>().begin())>;
// Given a vector of shared pointers infer the type of the pointed-to objects
template<typename T>
using ValuesVector = std::vector<PointedToType<T>>;
// Return a vector of dereferenced values
template<typename T>
ValuesVector<T> deref(const T& v) {
ValuesVector<T> result;
for (auto& t : v)
result.push_back(*t);
return result;
}
/* ************************************************************************* */
TEST(SymbolicBayesTree, clear) {
SymbolicBayesTree bayesTree = asiaBayesTree;
bayesTree.clear();
SymbolicBayesTree expected;
// Check whether cleared BayesTree is equal to a new BayesTree
CHECK(assert_equal(expected, bayesTree));
}
/* ************************************************************************* */
TEST(SymbolicBayesTree, clique_structure) {
// l1 l2
// / | / |
// x1 --- x2 --- x3 --- x4 --- x5
// \ |
// l3
SymbolicFactorGraph graph;
graph.emplace_shared<SymbolicFactor>(X(1), L(1));
graph.emplace_shared<SymbolicFactor>(X(1), X(2));
graph.emplace_shared<SymbolicFactor>(X(2), L(1));
graph.emplace_shared<SymbolicFactor>(X(2), X(3));
graph.emplace_shared<SymbolicFactor>(X(3), X(4));
graph.emplace_shared<SymbolicFactor>(X(4), L(2));
graph.emplace_shared<SymbolicFactor>(X(4), X(5));
graph.emplace_shared<SymbolicFactor>(L(2), X(5));
graph.emplace_shared<SymbolicFactor>(X(4), L(3));
graph.emplace_shared<SymbolicFactor>(X(5), L(3));
SymbolicBayesTree expected;
expected.insertRoot(
NodeClique(Keys(X(2))(X(3)), 2,
Children(NodeClique(
Keys(X(4))(X(3)), 1,
Children(NodeClique(
Keys(X(5))(L(2))(X(4)), 2,
Children(LeafClique(Keys(L(3))(X(4))(X(5)), 1))))))(
LeafClique(Keys(X(1))(L(1))(X(2)), 2))));
Ordering order{X(1), L(3), L(1), X(5), X(2), L(2), X(4), X(3)};
SymbolicBayesTree actual = *graph.eliminateMultifrontal(order);
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* *
Bayes Tree for testing conversion to a forest of orphans needed for incremental.
A,B
C|A E|B
D|C F|E
*/
/* ************************************************************************* */
TEST(BayesTree, removePath) {
const Key _A_ = A(0), _B_ = B(0), _C_ = C(0), _D_ = D(0), _E_ = E(0),
_F_ = F(0);
SymbolicBayesTree bayesTreeOrig;
auto left = NodeClique(Keys(_C_)(_A_), 1, {LeafClique(Keys(_D_)(_C_), 1)});
auto right = NodeClique(Keys(_E_)(_B_), 1, {LeafClique(Keys(_F_)(_E_), 1)});
bayesTreeOrig.insertRoot(NodeClique(Keys(_A_)(_B_), 2, {left, right}));
SymbolicBayesTree bayesTree = bayesTreeOrig;
// remove C, expected outcome: factor graph with ABC,
// Bayes Tree now contains two orphan trees: D|C and E|B,F|E
SymbolicFactorGraph expected;
expected.emplace_shared<SymbolicFactor>(_A_, _B_);
expected.emplace_shared<SymbolicFactor>(_C_, _A_);
SymbolicBayesTree::Cliques expectedOrphans{bayesTree[_D_], bayesTree[_E_]};
SymbolicBayesNet bn;
SymbolicBayesTree::Cliques orphans;
bayesTree.removePath(bayesTree[_C_], &bn, &orphans);
SymbolicFactorGraph factors(bn);
CHECK(assert_equal(expected, factors));
CHECK(assert_container_equal(deref(expectedOrphans), deref(orphans)));
bayesTree = bayesTreeOrig;
// remove E: factor graph with EB; E|B removed from second orphan tree
SymbolicFactorGraph expected2;
expected2.emplace_shared<SymbolicFactor>(_A_, _B_);
expected2.emplace_shared<SymbolicFactor>(_E_, _B_);
SymbolicBayesTree::Cliques expectedOrphans2{bayesTree[_F_], bayesTree[_C_]};
SymbolicBayesNet bn2;
SymbolicBayesTree::Cliques orphans2;
bayesTree.removePath(bayesTree[_E_], &bn2, &orphans2);
SymbolicFactorGraph factors2(bn2);
CHECK(assert_equal(expected2, factors2));
CHECK(assert_container_equal(deref(expectedOrphans2), deref(orphans2)));
}
/* ************************************************************************* */
TEST(BayesTree, removePath2) {
SymbolicBayesTree bayesTree = asiaBayesTree;
// Call remove-path with clique B
SymbolicBayesNet bn;
SymbolicBayesTree::Cliques orphans;
bayesTree.removePath(bayesTree[_B_], &bn, &orphans);
SymbolicFactorGraph factors(bn);
// Check expected outcome
SymbolicFactorGraph expected;
expected.emplace_shared<SymbolicFactor>(_E_, _L_, _B_);
CHECK(assert_equal(expected, factors));
SymbolicBayesTree::Cliques expectedOrphans{bayesTree[_S_], bayesTree[_T_],
bayesTree[_X_]};
CHECK(assert_container_equal(deref(expectedOrphans), deref(orphans)));
}
/* ************************************************************************* */
TEST(BayesTree, removePath3) {
SymbolicBayesTree bayesTree = asiaBayesTree;
// Call remove-path with clique T
SymbolicBayesNet bn;
SymbolicBayesTree::Cliques orphans;
bayesTree.removePath(bayesTree[_T_], &bn, &orphans);
SymbolicFactorGraph factors(bn);
// Check expected outcome
SymbolicFactorGraph expected;
expected.emplace_shared<SymbolicFactor>(_E_, _L_, _B_);
expected.emplace_shared<SymbolicFactor>(_T_, _E_, _L_);
CHECK(assert_equal(expected, factors));
SymbolicBayesTree::Cliques expectedOrphans{bayesTree[_S_], bayesTree[_X_]};
CHECK(assert_container_equal(deref(expectedOrphans), deref(orphans)));
}
void getAllCliques(const SymbolicBayesTree::sharedClique& subtree,
SymbolicBayesTree::Cliques& cliques) {
// Check if subtree exists
if (subtree) {
cliques.push_back(subtree);
// Recursive call over all child cliques
for (SymbolicBayesTree::sharedClique& childClique : subtree->children) {
getAllCliques(childClique, cliques);
}
}
}
/* ************************************************************************* */
TEST(BayesTree, shortcutCheck) {
const Key _A_ = 6, _B_ = 5, _C_ = 4, _D_ = 3, _E_ = 2, _F_ = 1, _G_ = 0;
auto chain = SymbolicFactorGraph(SymbolicFactor(_A_)) //
(SymbolicFactor(_B_, _A_)) //
(SymbolicFactor(_C_, _A_)) //
(SymbolicFactor(_D_, _C_)) //
(SymbolicFactor(_E_, _B_)) //
(SymbolicFactor(_F_, _E_)) //
(SymbolicFactor(_G_, _F_));
Ordering ordering{_G_, _F_, _E_, _D_, _C_, _B_, _A_};
SymbolicBayesTree bayesTree = *chain.eliminateMultifrontal(ordering);
// bayesTree.saveGraph("BT1.dot");
SymbolicBayesTree::sharedClique rootClique = bayesTree.roots().front();
// rootClique->printTree();
SymbolicBayesTree::Cliques allCliques;
getAllCliques(rootClique, allCliques);
for (SymbolicBayesTree::sharedClique& clique : allCliques) {
// clique->print("Clique#");
SymbolicBayesNet bn = clique->shortcut(rootClique);
// bn.print("Shortcut:\n");
// cout << endl;
}
// Check if all the cached shortcuts are cleared
rootClique->deleteCachedShortcuts();
for (SymbolicBayesTree::sharedClique& clique : allCliques) {
bool notCleared = clique->cachedSeparatorMarginal().has_value();
CHECK(notCleared == false);
}
EXPECT_LONGS_EQUAL(0, (long)rootClique->numCachedSeparatorMarginals());
// for(SymbolicBayesTree::sharedClique& clique: allCliques) {
// clique->print("Clique#");
// if(clique->cachedShortcut()){
// bn = clique->cachedShortcut().get();
// bn.print("Shortcut:\n");
// }
// else
// cout << "Not Initialized" << endl;
// cout << endl;
// }
}
/* ************************************************************************* */
TEST(BayesTree, removeTop) {
SymbolicBayesTree bayesTree = asiaBayesTree;
// create a new factor to be inserted
// std::shared_ptr<IndexFactor> newFactor(new IndexFactor(_S_,_B_));
// Remove the contaminated part of the Bayes tree
SymbolicBayesNet bn;
SymbolicBayesTree::Cliques orphans;
bayesTree.removeTop(Keys(_B_)(_S_), &bn, &orphans);
// Check expected outcome
SymbolicBayesNet expected;
expected.add(SymbolicConditional::FromKeys<KeyVector>(Keys(_E_)(_L_)(_B_), 3));
expected.add(SymbolicConditional::FromKeys<KeyVector>(Keys(_S_)(_B_)(_L_), 1));
CHECK(assert_equal(expected, bn));
SymbolicBayesTree::Cliques expectedOrphans{bayesTree[_T_], bayesTree[_X_]};
CHECK(assert_container_equal(deref(expectedOrphans), deref(orphans)));
// Try removeTop again with a factor that should not change a thing
// std::shared_ptr<IndexFactor> newFactor2(new IndexFactor(_B_));
SymbolicBayesNet bn2;
SymbolicBayesTree::Cliques orphans2;
bayesTree.removeTop(Keys(_B_), &bn2, &orphans2);
SymbolicFactorGraph factors2(bn2);
SymbolicFactorGraph expected2;
CHECK(assert_equal(expected2, factors2));
SymbolicBayesTree::Cliques expectedOrphans2;
CHECK(assert_container_equal(deref(expectedOrphans2), deref(orphans2)));
}
/* ************************************************************************* */
TEST(BayesTree, removeTop2) {
SymbolicBayesTree bayesTree = asiaBayesTree;
// create two factors to be inserted
// SymbolicFactorGraph newFactors;
// newFactors.push_factor(_B_);
// newFactors.push_factor(_S_);
// Remove the contaminated part of the Bayes tree
SymbolicBayesNet bn;
SymbolicBayesTree::Cliques orphans;
bayesTree.removeTop(Keys(_T_), &bn, &orphans);
// Check expected outcome
auto expected = SymbolicBayesNet(
SymbolicConditional::FromKeys<KeyVector>(Keys(_E_)(_L_)(_B_), 3))(
SymbolicConditional::FromKeys<KeyVector>(Keys(_T_)(_E_)(_L_), 1));
CHECK(assert_equal(expected, bn));
SymbolicBayesTree::Cliques expectedOrphans{bayesTree[_S_], bayesTree[_X_]};
CHECK(assert_container_equal(deref(expectedOrphans), deref(orphans)));
}
/* ************************************************************************* */
TEST(BayesTree, removeTop3) {
auto graph = SymbolicFactorGraph(SymbolicFactor(L(5)))(SymbolicFactor(
X(4), L(5)))(SymbolicFactor(X(2), X(4)))(SymbolicFactor(X(3), X(2)));
Ordering ordering{X(3), X(2), X(4), L(5)};
SymbolicBayesTree bayesTree = *graph.eliminateMultifrontal(ordering);
// remove all
SymbolicBayesNet bn;
SymbolicBayesTree::Cliques orphans;
bayesTree.removeTop(Keys(L(5))(X(4))(X(2))(X(3)), &bn, &orphans);
auto expectedBn = SymbolicBayesNet(
SymbolicConditional::FromKeys<KeyVector>(Keys(X(4))(L(5)), 2))(
SymbolicConditional(X(2), X(4)))(SymbolicConditional(X(3), X(2)));
EXPECT(assert_equal(expectedBn, bn));
EXPECT(orphans.empty());
}
/* ************************************************************************* */
TEST(BayesTree, removeTop4) {
auto graph = SymbolicFactorGraph(SymbolicFactor(L(5)))(SymbolicFactor(
X(4), L(5)))(SymbolicFactor(X(2), X(4)))(SymbolicFactor(X(3), X(2)));
Ordering ordering{X(3), X(2), X(4), L(5)};
SymbolicBayesTree bayesTree = *graph.eliminateMultifrontal(ordering);
// remove all
SymbolicBayesNet bn;
SymbolicBayesTree::Cliques orphans;
bayesTree.removeTop(Keys(X(2))(L(5))(X(4))(X(3)), &bn, &orphans);
auto expectedBn = SymbolicBayesNet(
SymbolicConditional::FromKeys<KeyVector>(Keys(X(4))(L(5)), 2))(
SymbolicConditional(X(2), X(4)))(SymbolicConditional(X(3), X(2)));
EXPECT(assert_equal(expectedBn, bn));
EXPECT(orphans.empty());
}
/* ************************************************************************* */
TEST(BayesTree, removeTop5) {
// Remove top called with variables that are not in the Bayes tree
auto graph = SymbolicFactorGraph(SymbolicFactor(L(5)))(SymbolicFactor(
X(4), L(5)))(SymbolicFactor(X(2), X(4)))(SymbolicFactor(X(3), X(2)));
Ordering ordering{X(3), X(2), X(4), L(5)};
SymbolicBayesTree bayesTree = *graph.eliminateMultifrontal(ordering);
// Remove nonexistant
SymbolicBayesNet bn;
SymbolicBayesTree::Cliques orphans;
bayesTree.removeTop(Keys(X(10)), &bn, &orphans);
SymbolicBayesNet expectedBn;
EXPECT(assert_equal(expectedBn, bn));
EXPECT(orphans.empty());
}
/* ************************************************************************* */
TEST(SymbolicBayesTree, thinTree) {
// create a thin-tree Bayes net, a la Jean-Guillaume
SymbolicBayesNet bayesNet;
bayesNet.emplace_shared<SymbolicConditional>(14);
bayesNet.emplace_shared<SymbolicConditional>(13, 14);
bayesNet.emplace_shared<SymbolicConditional>(12, 14);
bayesNet.emplace_shared<SymbolicConditional>(11, 13, 14);
bayesNet.emplace_shared<SymbolicConditional>(10, 13, 14);
bayesNet.emplace_shared<SymbolicConditional>(9, 12, 14);
bayesNet.emplace_shared<SymbolicConditional>(8, 12, 14);
bayesNet.emplace_shared<SymbolicConditional>(7, 11, 13);
bayesNet.emplace_shared<SymbolicConditional>(6, 11, 13);
bayesNet.emplace_shared<SymbolicConditional>(5, 10, 13);
bayesNet.emplace_shared<SymbolicConditional>(4, 10, 13);
bayesNet.emplace_shared<SymbolicConditional>(3, 9, 12);
bayesNet.emplace_shared<SymbolicConditional>(2, 9, 12);
bayesNet.emplace_shared<SymbolicConditional>(1, 8, 12);
bayesNet.emplace_shared<SymbolicConditional>(0, 8, 12);
if (debug) {
GTSAM_PRINT(bayesNet);
bayesNet.saveGraph("/tmp/symbolicBayesNet.dot");
}
// create a BayesTree out of a Bayes net
SymbolicBayesTree bayesTree =
*SymbolicFactorGraph(bayesNet).eliminateMultifrontal();
if (debug) {
GTSAM_PRINT(bayesTree);
bayesTree.saveGraph("/tmp/SymbolicBayesTree.dot");
}
SymbolicBayesTree::Clique::shared_ptr R = bayesTree.roots().front();
{
// check shortcut P(S9||R) to root
SymbolicBayesTree::Clique::shared_ptr c = bayesTree[9];
SymbolicBayesNet shortcut = c->shortcut(R);
auto expected = SymbolicBayesNet(SymbolicConditional(14, 11, 13));
EXPECT(assert_equal(expected, shortcut));
}
{
// check shortcut P(S8||R) to root
SymbolicBayesTree::Clique::shared_ptr c = bayesTree[8];
SymbolicBayesNet shortcut = c->shortcut(R);
auto expected = SymbolicBayesNet(SymbolicConditional(12, 14))(
SymbolicConditional(14, 11, 13));
EXPECT(assert_equal(expected, shortcut));
}
{
// check shortcut P(S4||R) to root
SymbolicBayesTree::Clique::shared_ptr c = bayesTree[4];
SymbolicBayesNet shortcut = c->shortcut(R);
auto expected = SymbolicBayesNet(SymbolicConditional(10, 11, 13));
EXPECT(assert_equal(expected, shortcut));
}
{
// check shortcut P(S2||R) to root
SymbolicBayesTree::Clique::shared_ptr c = bayesTree[2];
SymbolicBayesNet shortcut = c->shortcut(R);
auto expected = SymbolicBayesNet(SymbolicConditional(9, 11, 12, 13))(
SymbolicConditional(12, 11, 13));
EXPECT(assert_equal(expected, shortcut));
}
{
// check shortcut P(S0||R) to root
SymbolicBayesTree::Clique::shared_ptr c = bayesTree[0];
SymbolicBayesNet shortcut = c->shortcut(R);
auto expected = SymbolicBayesNet(SymbolicConditional(8, 11, 12, 13))(
SymbolicConditional(12, 11, 13));
EXPECT(assert_equal(expected, shortcut));
}
SymbolicBayesNet::shared_ptr actualJoint;
// Check joint P(8,2)
if (false) { // TODO, not disjoint
actualJoint = bayesTree.jointBayesNet(8, 2);
SymbolicBayesNet expected;
expected.emplace_shared<SymbolicConditional>(8);
expected.emplace_shared<SymbolicConditional>(2, 8);
EXPECT(assert_equal(expected, *actualJoint));
}
// Check joint P(1,2)
if (false) { // TODO, not disjoint
actualJoint = bayesTree.jointBayesNet(1, 2);
SymbolicBayesNet expected;
expected.emplace_shared<SymbolicConditional>(2);
expected.emplace_shared<SymbolicConditional>(1, 2);
EXPECT(assert_equal(expected, *actualJoint));
}
// Check joint P(2,6)
if (true) {
actualJoint = bayesTree.jointBayesNet(2, 6);
SymbolicBayesNet expected;
expected.emplace_shared<SymbolicConditional>(2, 6);
expected.emplace_shared<SymbolicConditional>(6);
EXPECT(assert_equal(expected, *actualJoint));
}
// Check joint P(4,6)
if (false) { // TODO, not disjoint
actualJoint = bayesTree.jointBayesNet(4, 6);
SymbolicBayesNet expected;
expected.emplace_shared<SymbolicConditional>(6);
expected.emplace_shared<SymbolicConditional>(4, 6);
EXPECT(assert_equal(expected, *actualJoint));
}
}
/* ************************************************************************* */
TEST(SymbolicBayesTree, forest_joint) {
// Create forest
sharedClique root1 = LeafClique(Keys(1), 1);
sharedClique root2 = LeafClique(Keys(2), 1);
SymbolicBayesTree bayesTree;
bayesTree.insertRoot(root1);
bayesTree.insertRoot(root2);
// Check joint
auto expected =
SymbolicBayesNet(SymbolicConditional(1))(SymbolicConditional(2));
SymbolicBayesNet actual = *bayesTree.jointBayesNet(1, 2);
EXPECT(assert_equal(expected, actual));
}
/* ************************************************************************* *
Bayes tree for smoother with "natural" ordering:
C1 5 6
C2 4 : 5
C3 3 : 4
C4 2 : 3
C5 1 : 2
C6 0 : 1
**************************************************************************** */
TEST(SymbolicBayesTree, linear_smoother_shortcuts) {
// Create smoother with 7 nodes
SymbolicFactorGraph smoother;
smoother.push_factor(0);
smoother.push_factor(0, 1);
smoother.push_factor(1, 2);
smoother.push_factor(2, 3);
smoother.push_factor(3, 4);
smoother.push_factor(4, 5);
smoother.push_factor(5, 6);
// Eliminate in numerical order 0..6
Ordering ordering(smoother.keys());
SymbolicBayesNet bayesNet = *smoother.eliminateSequential(ordering);
if (debug) {
GTSAM_PRINT(bayesNet);
bayesNet.saveGraph("/tmp/symbolicBayesNet.dot");
}
// create a BayesTree
SymbolicBayesTree bayesTree = *smoother.eliminateMultifrontal(ordering);
if (debug) {
GTSAM_PRINT(bayesTree);
bayesTree.saveGraph("/tmp/SymbolicBayesTree.dot");
}
SymbolicBayesTree::Clique::shared_ptr R = bayesTree.roots().front();
{
// check shortcut P(S2||R) to root
SymbolicBayesTree::Clique::shared_ptr c =
bayesTree[4]; // 4 is frontal in C2
SymbolicBayesNet shortcut = c->shortcut(R);
SymbolicBayesNet expected;
EXPECT(assert_equal(expected, shortcut));
}
{
// check shortcut P(S3||R) to root
SymbolicBayesTree::Clique::shared_ptr c =
bayesTree[3]; // 3 is frontal in C3
SymbolicBayesNet shortcut = c->shortcut(R);
auto expected = SymbolicBayesNet(SymbolicConditional(4, 5));
EXPECT(assert_equal(expected, shortcut));
}
{
// check shortcut P(S4||R) to root
SymbolicBayesTree::Clique::shared_ptr c =
bayesTree[2]; // 2 is frontal in C4
SymbolicBayesNet shortcut = c->shortcut(R);
auto expected = SymbolicBayesNet(SymbolicConditional(3, 5));
EXPECT(assert_equal(expected, shortcut));
}
}
/* ************************************************************************* */
// from testSymbolicJunctionTree, which failed at one point
TEST(SymbolicBayesTree, complicatedMarginal) {
// Create the conditionals to go in the BayesTree
sharedClique cur;
sharedClique root = LeafClique(Keys(11)(12), 2);
cur = root;
root->children.push_back(LeafClique(Keys(9)(10)(11)(12), 2));
root->children.back()->parent_ = root;
root->children.push_back(LeafClique(Keys(7)(8)(11), 2));
root->children.back()->parent_ = root;
cur = root->children.back();
cur->children.push_back(LeafClique(Keys(5)(6)(7)(8), 2));
cur->children.back()->parent_ = cur;
cur = cur->children.back();
cur->children.push_back(LeafClique(Keys(3)(4)(6), 2));
cur->children.back()->parent_ = cur;
cur->children.push_back(LeafClique(Keys(1)(2)(5), 2));
cur->children.back()->parent_ = cur;
// Create Bayes Tree
SymbolicBayesTree bt;
bt.insertRoot(root);
if (debug) {
GTSAM_PRINT(bt);
bt.saveGraph("/tmp/SymbolicBayesTree.dot");
}
// Shortcut on 9
{
SymbolicBayesTree::Clique::shared_ptr c = bt[9];
SymbolicBayesNet shortcut = c->shortcut(root);
EXPECT(assert_equal(SymbolicBayesNet(), shortcut));
}
// Shortcut on 7
{
SymbolicBayesTree::Clique::shared_ptr c = bt[7];
SymbolicBayesNet shortcut = c->shortcut(root);
EXPECT(assert_equal(SymbolicBayesNet(), shortcut));
}
// Shortcut on 5
{
SymbolicBayesTree::Clique::shared_ptr c = bt[5];
SymbolicBayesNet shortcut = c->shortcut(root);
auto expected = SymbolicBayesNet(SymbolicConditional(7, 8, 11))(
SymbolicConditional(8, 11));
EXPECT(assert_equal(expected, shortcut));
}
// Shortcut on 3
{
SymbolicBayesTree::Clique::shared_ptr c = bt[3];
SymbolicBayesNet shortcut = c->shortcut(root);
auto expected = SymbolicBayesNet(SymbolicConditional(6, 11));
EXPECT(assert_equal(expected, shortcut));
}
// Shortcut on 1
{
SymbolicBayesTree::Clique::shared_ptr c = bt[1];
SymbolicBayesNet shortcut = c->shortcut(root);
auto expected = SymbolicBayesNet(SymbolicConditional(5, 11));
EXPECT(assert_equal(expected, shortcut));
}
// Marginal on 5
{
SymbolicFactor::shared_ptr actual = bt.marginalFactor(5);
EXPECT(assert_equal(SymbolicFactor(5), *actual, 1e-1));
}
// Shortcut on 6
{
SymbolicFactor::shared_ptr actual = bt.marginalFactor(6);
EXPECT(assert_equal(SymbolicFactor(6), *actual, 1e-1));
}
}
/* ************************************************************************* */
TEST(SymbolicBayesTree, COLAMDvsMETIS) {
// create circular graph
SymbolicFactorGraph sfg;
sfg.push_factor(0, 1);
sfg.push_factor(1, 2);
sfg.push_factor(2, 3);
sfg.push_factor(3, 4);
sfg.push_factor(4, 5);
sfg.push_factor(0, 5);
// COLAMD
{
Ordering ordering = Ordering::Create(Ordering::COLAMD, sfg);
EXPECT(assert_equal(Ordering{0, 5, 1, 4, 2, 3}, ordering));
// - P( 4 2 3)
// | - P( 1 | 2 4)
// | | - P( 5 | 1 4)
// | | | - P( 0 | 1 5)
SymbolicBayesTree expected;
expected.insertRoot( //
NodeClique(
Keys(4)(2)(3), 3,
Children( //
NodeClique(
Keys(1)(2)(4), 1,
Children( //
NodeClique(Keys(5)(1)(4), 1,
Children( //
LeafClique(Keys(0)(1)(5), 1))))))));
SymbolicBayesTree actual = *sfg.eliminateMultifrontal(ordering);
EXPECT(assert_equal(expected, actual));
}
#ifdef GTSAM_SUPPORT_NESTED_DISSECTION
// METIS
{
Ordering ordering = Ordering::Create(Ordering::METIS, sfg);
// Linux and Mac split differently when using Metis
#if defined(__APPLE__) || defined(__QNX__)
EXPECT(assert_equal(Ordering{5, 4, 2, 1, 0, 3}, ordering));
#elif defined(_WIN32)
EXPECT(assert_equal(Ordering{4, 3, 1, 0, 5, 2}, ordering));
#else
EXPECT(assert_equal(Ordering{3, 2, 5, 0, 4, 1}, ordering));
#endif
// - P( 1 0 3)
// | - P( 4 | 0 3)
// | | - P( 5 | 0 4)
// | - P( 2 | 1 3)
SymbolicBayesTree expected;
#if defined(__APPLE__) || defined(__QNX__)
expected.insertRoot(
NodeClique(Keys(1)(0)(3), 3,
Children( //
NodeClique(Keys(4)(0)(3), 1, //
{LeafClique(Keys(5)(0)(4), 1)}))(
LeafClique(Keys(2)(1)(3), 1))));
#elif defined(_WIN32)
expected.insertRoot(
NodeClique(Keys(3)(5)(2), 3,
Children( //
NodeClique(Keys(4)(3)(5), 1, //
{LeafClique(Keys(0)(2)(5), 1)}))(
LeafClique(Keys(1)(0)(2), 1))));
#else
expected.insertRoot(
NodeClique(Keys(2)(4)(1), 3,
Children( //
NodeClique(Keys(0)(1)(4), 1, //
{LeafClique(Keys(5)(0)(4), 1)}))(
LeafClique(Keys(3)(2)(4), 1))));
#endif
SymbolicBayesTree actual = *sfg.eliminateMultifrontal(ordering);
EXPECT(assert_equal(expected, actual));
}
#endif
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */