302 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
/**
 | 
						|
 * @file    testBetweenFactorEM.cpp
 | 
						|
 * @brief   Unit test for the BetweenFactorEM
 | 
						|
 * @author  Vadim Indelman
 | 
						|
 */
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
 | 
						|
#include <gtsam_unstable/slam/BetweenFactorEM.h>
 | 
						|
#include <gtsam/geometry/Pose2.h>
 | 
						|
#include <gtsam/nonlinear/Values.h>
 | 
						|
#include <gtsam/base/numericalDerivative.h>
 | 
						|
 | 
						|
#include <gtsam/slam/BetweenFactor.h>
 | 
						|
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
 | 
						|
 | 
						|
// Disabled this test because it is currently failing - remove the lines "#if 0" and "#endif" below
 | 
						|
// to reenable the test.
 | 
						|
#if 0
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
LieVector predictionError(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactorEM<gtsam::Pose2>& factor){
 | 
						|
  gtsam::Values values;
 | 
						|
  values.insert(key1, p1);
 | 
						|
  values.insert(key2, p2);
 | 
						|
  //  LieVector err = factor.whitenedError(values);
 | 
						|
  //  return err;
 | 
						|
  return LieVector::Expmap(factor.whitenedError(values));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
LieVector predictionError_standard(const Pose2& p1, const Pose2& p2, const gtsam::Key& key1, const gtsam::Key& key2, const BetweenFactor<gtsam::Pose2>& factor){
 | 
						|
  gtsam::Values values;
 | 
						|
  values.insert(key1, p1);
 | 
						|
  values.insert(key2, p2);
 | 
						|
  //  LieVector err = factor.whitenedError(values);
 | 
						|
  //  return err;
 | 
						|
  return LieVector::Expmap(factor.whitenedError(values));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( BetweenFactorEM, ConstructorAndEquals)
 | 
						|
{
 | 
						|
  gtsam::Key key1(1);
 | 
						|
  gtsam::Key key2(2);
 | 
						|
 | 
						|
  gtsam::Pose2 p1(10.0, 15.0, 0.1);
 | 
						|
  gtsam::Pose2 p2(15.0, 15.0, 0.3);
 | 
						|
  gtsam::Pose2 noise(0.5, 0.4, 0.01);
 | 
						|
  gtsam::Pose2 rel_pose_ideal = p1.between(p2);
 | 
						|
  gtsam::Pose2 rel_pose_msr   = rel_pose_ideal.compose(noise);
 | 
						|
 | 
						|
  SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(gtsam::Vector3(0.5, 0.5, 0.05)));
 | 
						|
  SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(gtsam::Vector3(5, 5, 1.0)));
 | 
						|
 | 
						|
  double prior_outlier = 0.5;
 | 
						|
  double prior_inlier = 0.5;
 | 
						|
 | 
						|
  // Constructor
 | 
						|
  BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier,
 | 
						|
      prior_inlier, prior_outlier);
 | 
						|
  BetweenFactorEM<gtsam::Pose2> g(key1, key2, rel_pose_msr, model_inlier, model_outlier,
 | 
						|
        prior_inlier, prior_outlier);
 | 
						|
 | 
						|
  // Equals
 | 
						|
  CHECK(assert_equal(f, g, 1e-5));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( BetweenFactorEM, EvaluateError)
 | 
						|
{
 | 
						|
  gtsam::Key key1(1);
 | 
						|
  gtsam::Key key2(2);
 | 
						|
 | 
						|
  // Inlier test
 | 
						|
  gtsam::Pose2 p1(10.0, 15.0, 0.1);
 | 
						|
  gtsam::Pose2 p2(15.0, 15.0, 0.3);
 | 
						|
  gtsam::Pose2 noise(0.5, 0.4, 0.01);
 | 
						|
  gtsam::Pose2 rel_pose_ideal = p1.between(p2);
 | 
						|
  gtsam::Pose2 rel_pose_msr   = rel_pose_ideal.compose(noise);
 | 
						|
 | 
						|
  SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(gtsam::Vector3(0.5, 0.5, 0.05)));
 | 
						|
  SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(gtsam::Vector3(50.0, 50.0, 10.0)));
 | 
						|
 | 
						|
  gtsam::Values values;
 | 
						|
  values.insert(key1, p1);
 | 
						|
  values.insert(key2, p2);
 | 
						|
 | 
						|
  double prior_outlier = 0.5;
 | 
						|
  double prior_inlier = 0.5;
 | 
						|
 | 
						|
  BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier,
 | 
						|
      prior_inlier, prior_outlier);
 | 
						|
 | 
						|
  Vector actual_err_wh = f.whitenedError(values);
 | 
						|
 | 
						|
  Vector actual_err_wh_inlier  = (Vector(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
 | 
						|
  Vector actual_err_wh_outlier = (Vector(3) << actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]);
 | 
						|
 | 
						|
  //  cout << "Inlier test. norm of actual_err_wh_inlier, actual_err_wh_outlier: "<<actual_err_wh_inlier.norm()<<","<<actual_err_wh_outlier.norm()<<endl;
 | 
						|
  //  cout<<actual_err_wh[0]<<" "<<actual_err_wh[1]<<" "<<actual_err_wh[2]<<actual_err_wh[3]<<" "<<actual_err_wh[4]<<" "<<actual_err_wh[5]<<endl;
 | 
						|
 | 
						|
  // in case of inlier, inlier-mode whitented error should be dominant
 | 
						|
  //  CHECK(actual_err_wh_inlier.norm() > 1000.0*actual_err_wh_outlier.norm());
 | 
						|
 | 
						|
  // Outlier test
 | 
						|
  noise = gtsam::Pose2(10.5, 20.4, 2.01);
 | 
						|
  gtsam::Pose2 rel_pose_msr_test2   = rel_pose_ideal.compose(noise);
 | 
						|
 | 
						|
  BetweenFactorEM<gtsam::Pose2> g(key1, key2, rel_pose_msr_test2, model_inlier, model_outlier,
 | 
						|
      prior_inlier, prior_outlier);
 | 
						|
 | 
						|
  actual_err_wh = g.whitenedError(values);
 | 
						|
 | 
						|
  actual_err_wh_inlier = (Vector(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
 | 
						|
  actual_err_wh_outlier = (Vector(3) << actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]);
 | 
						|
 | 
						|
  // in case of outlier, outlier-mode whitented error should be dominant
 | 
						|
  //  CHECK(actual_err_wh_inlier.norm() < 1000.0*actual_err_wh_outlier.norm());
 | 
						|
  //
 | 
						|
  //  cout << "Outlier test. norm of actual_err_wh_inlier, actual_err_wh_outlier: "<<actual_err_wh_inlier.norm()<<","<<actual_err_wh_outlier<<endl;
 | 
						|
  //  cout<<actual_err_wh[0]<<" "<<actual_err_wh[1]<<" "<<actual_err_wh[2]<<actual_err_wh[3]<<" "<<actual_err_wh[4]<<" "<<actual_err_wh[5]<<endl;
 | 
						|
 | 
						|
  // Compare with standard between factor for the inlier case
 | 
						|
  prior_outlier = 0.0;
 | 
						|
  prior_inlier  = 1.0;
 | 
						|
  BetweenFactorEM<gtsam::Pose2> h_EM(key1, key2, rel_pose_msr, model_inlier, model_outlier,
 | 
						|
        prior_inlier, prior_outlier);
 | 
						|
  actual_err_wh = h_EM.whitenedError(values);
 | 
						|
  actual_err_wh_inlier = (Vector(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
 | 
						|
 | 
						|
  BetweenFactor<gtsam::Pose2> h(key1, key2, rel_pose_msr, model_inlier );
 | 
						|
  Vector actual_err_wh_stnd = h.whitenedError(values);
 | 
						|
 | 
						|
  //  cout<<"actual_err_wh: "<<actual_err_wh_inlier[0]<<", "<<actual_err_wh_inlier[1]<<", "<<actual_err_wh_inlier[2]<<endl;
 | 
						|
  //  cout<<"actual_err_wh_stnd: "<<actual_err_wh_stnd[0]<<", "<<actual_err_wh_stnd[1]<<", "<<actual_err_wh_stnd[2]<<endl;
 | 
						|
  //
 | 
						|
  //  CHECK( assert_equal(actual_err_wh_inlier, actual_err_wh_stnd, 1e-8));
 | 
						|
}
 | 
						|
 | 
						|
///* ************************************************************************** */
 | 
						|
TEST (BetweenFactorEM, jacobian ) {
 | 
						|
 | 
						|
  gtsam::Key key1(1);
 | 
						|
  gtsam::Key key2(2);
 | 
						|
 | 
						|
  // Inlier test
 | 
						|
  gtsam::Pose2 p1(10.0, 15.0, 0.1);
 | 
						|
  gtsam::Pose2 p2(15.0, 15.0, 0.3);
 | 
						|
  gtsam::Pose2 noise(0.5, 0.4, 0.01);
 | 
						|
  gtsam::Pose2 rel_pose_ideal = p1.between(p2);
 | 
						|
  gtsam::Pose2 rel_pose_msr   = rel_pose_ideal.compose(noise);
 | 
						|
 | 
						|
  SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(gtsam::Vector3(0.5, 0.5, 0.05)));
 | 
						|
  SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(gtsam::Vector3(50.0, 50.0, 10.0)));
 | 
						|
 | 
						|
  gtsam::Values values;
 | 
						|
  values.insert(key1, p1);
 | 
						|
  values.insert(key2, p2);
 | 
						|
 | 
						|
  double prior_outlier = 0.0;
 | 
						|
  double prior_inlier = 1.0;
 | 
						|
 | 
						|
  BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier,
 | 
						|
      prior_inlier, prior_outlier);
 | 
						|
 | 
						|
  std::vector<gtsam::Matrix> H_actual(2);
 | 
						|
  Vector actual_err_wh = f.whitenedError(values, H_actual);
 | 
						|
 | 
						|
  Matrix H1_actual = H_actual[0];
 | 
						|
  Matrix H2_actual = H_actual[1];
 | 
						|
 | 
						|
  // compare to standard between factor
 | 
						|
  BetweenFactor<gtsam::Pose2> h(key1, key2, rel_pose_msr, model_inlier );
 | 
						|
  Vector actual_err_wh_stnd = h.whitenedError(values);
 | 
						|
  Vector actual_err_wh_inlier = (Vector(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
 | 
						|
//  CHECK( assert_equal(actual_err_wh_stnd, actual_err_wh_inlier, 1e-8));
 | 
						|
  std::vector<gtsam::Matrix> H_actual_stnd_unwh(2);
 | 
						|
  (void)h.unwhitenedError(values, H_actual_stnd_unwh);
 | 
						|
  Matrix H1_actual_stnd_unwh = H_actual_stnd_unwh[0];
 | 
						|
  Matrix H2_actual_stnd_unwh = H_actual_stnd_unwh[1];
 | 
						|
  Matrix H1_actual_stnd = model_inlier->Whiten(H1_actual_stnd_unwh);
 | 
						|
  Matrix H2_actual_stnd = model_inlier->Whiten(H2_actual_stnd_unwh);
 | 
						|
//  CHECK( assert_equal(H1_actual_stnd, H1_actual, 1e-8));
 | 
						|
//  CHECK( assert_equal(H2_actual_stnd, H2_actual, 1e-8));
 | 
						|
 | 
						|
  double stepsize = 1.0e-9;
 | 
						|
  Matrix H1_expected = gtsam::numericalDerivative11<LieVector, Pose2>(boost::bind(&predictionError, _1, p2, key1, key2, f), p1, stepsize);
 | 
						|
  Matrix H2_expected = gtsam::numericalDerivative11<LieVector, Pose2>(boost::bind(&predictionError, p1, _1, key1, key2, f), p2, stepsize);
 | 
						|
 | 
						|
 | 
						|
  // try to check numerical derivatives of a standard between factor
 | 
						|
  Matrix H1_expected_stnd = gtsam::numericalDerivative11<LieVector, Pose2>(boost::bind(&predictionError_standard, _1, p2, key1, key2, h), p1, stepsize);
 | 
						|
//  CHECK( assert_equal(H1_expected_stnd, H1_actual_stnd, 1e-5));
 | 
						|
//
 | 
						|
//
 | 
						|
//  CHECK( assert_equal(H1_expected, H1_actual, 1e-8));
 | 
						|
//  CHECK( assert_equal(H2_expected, H2_actual, 1e-8));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( BetweenFactorEM, CaseStudy)
 | 
						|
{
 | 
						|
 | 
						|
  bool debug = false;
 | 
						|
 | 
						|
  gtsam::Key key1(1);
 | 
						|
  gtsam::Key key2(2);
 | 
						|
 | 
						|
  // Inlier test
 | 
						|
  gtsam::Pose2 p1;
 | 
						|
  gtsam::Pose2 p2(-0.0491752554, -0.289649075, -0.328993962);
 | 
						|
  gtsam::Pose2 rel_pose_msr(0.0316191379, 0.0247539161, 0.004102182);
 | 
						|
 | 
						|
  SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(gtsam::Vector3(0.4021, 0.286, 0.428)));
 | 
						|
  SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(gtsam::Vector3(4.9821, 4.614, 1.8387)));
 | 
						|
 | 
						|
  gtsam::Values values;
 | 
						|
    values.insert(key1, p1);
 | 
						|
    values.insert(key2, p2);
 | 
						|
 | 
						|
  double prior_outlier = 0.5;
 | 
						|
  double prior_inlier = 0.5;
 | 
						|
 | 
						|
  BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier,
 | 
						|
      prior_inlier, prior_outlier);
 | 
						|
 | 
						|
  if (debug)
 | 
						|
    cout << "==== inside CaseStudy ===="<<endl;
 | 
						|
 | 
						|
  gtsam::Vector p_inlier_outler = f.calcIndicatorProb(values);
 | 
						|
 | 
						|
  Vector actual_err_unw = f.unwhitenedError(values);
 | 
						|
  Vector actual_err_wh  = f.whitenedError(values);
 | 
						|
 | 
						|
  Vector actual_err_wh_inlier = (Vector(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
 | 
						|
  Vector actual_err_wh_outlier = (Vector(3) << actual_err_wh[3], actual_err_wh[4], actual_err_wh[5]);
 | 
						|
 | 
						|
  if (debug){
 | 
						|
    cout << "p_inlier_outler: "<<p_inlier_outler[0]<<", "<<p_inlier_outler[1]<<endl;
 | 
						|
    cout<<"actual_err_unw: "<<actual_err_unw[0]<<", "<<actual_err_unw[1]<<", "<<actual_err_unw[2]<<endl;
 | 
						|
    cout<<"actual_err_wh_inlier: "<<actual_err_wh_inlier[0]<<", "<<actual_err_wh_inlier[1]<<", "<<actual_err_wh_inlier[2]<<endl;
 | 
						|
    cout<<"actual_err_wh_outlier: "<<actual_err_wh_outlier[0]<<", "<<actual_err_wh_outlier[1]<<", "<<actual_err_wh_outlier[2]<<endl;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
///* ************************************************************************** */
 | 
						|
TEST (BetweenFactorEM, updateNoiseModel ) {
 | 
						|
  gtsam::Key key1(1);
 | 
						|
  gtsam::Key key2(2);
 | 
						|
 | 
						|
  gtsam::Pose2 p1(10.0, 15.0, 0.1);
 | 
						|
  gtsam::Pose2 p2(15.0, 15.0, 0.3);
 | 
						|
  gtsam::Pose2 noise(0.5, 0.4, 0.01);
 | 
						|
  gtsam::Pose2 rel_pose_ideal = p1.between(p2);
 | 
						|
  gtsam::Pose2 rel_pose_msr   = rel_pose_ideal.compose(noise);
 | 
						|
 | 
						|
  SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 1.5, 2.5, 4.05)));
 | 
						|
  SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 50.0, 50.0, 10.0)));
 | 
						|
 | 
						|
  gtsam::Values values;
 | 
						|
  values.insert(key1, p1);
 | 
						|
  values.insert(key2, p2);
 | 
						|
 | 
						|
  double prior_outlier = 0.0;
 | 
						|
  double prior_inlier = 1.0;
 | 
						|
 | 
						|
  BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier,
 | 
						|
      prior_inlier, prior_outlier);
 | 
						|
 | 
						|
  SharedGaussian model = SharedGaussian(noiseModel::Isotropic::Sigma(3, 1e2));
 | 
						|
 | 
						|
  NonlinearFactorGraph graph;
 | 
						|
  graph.addPrior(key1, p1, model);
 | 
						|
  graph.addPrior(key2, p2, model);
 | 
						|
 | 
						|
  f.updateNoiseModels(values, graph);
 | 
						|
 | 
						|
  SharedGaussian model_inlier_new = f.get_model_inlier();
 | 
						|
  SharedGaussian model_outlier_new = f.get_model_outlier();
 | 
						|
 | 
						|
  model_inlier->print("model_inlier:");
 | 
						|
  model_outlier->print("model_outlier:");
 | 
						|
  model_inlier_new->print("model_inlier_new:");
 | 
						|
  model_outlier_new->print("model_outlier_new:");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
  int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
						|
/* ************************************************************************* */
 |