59 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			59 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
/*
 | 
						|
 * Pose2SLAMExample_easy.cpp
 | 
						|
 *
 | 
						|
 *  Created on: Oct 21, 2010
 | 
						|
 *      Author: ydjian
 | 
						|
 */
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include <iostream>
 | 
						|
#include <boost/shared_ptr.hpp>
 | 
						|
 | 
						|
// pull in the Pose2 SLAM domain with all typedefs and helper functions defined
 | 
						|
#include <gtsam/slam/pose2SLAM.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearOptimization-inl.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace gtsam::pose2SLAM;
 | 
						|
 | 
						|
int main(int argc, char** argv) {
 | 
						|
	// create keys for robot positions
 | 
						|
	Key x1(1), x2(2), x3(3);
 | 
						|
 | 
						|
	/* 1. create graph container and add factors to it */
 | 
						|
	Graph graph ;
 | 
						|
 | 
						|
	/* 2.a add prior  */
 | 
						|
	// gaussian for prior
 | 
						|
	SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
 | 
						|
	Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin
 | 
						|
	graph.addPrior(x1, prior_measurement, prior_model); // add directly to graph
 | 
						|
 | 
						|
	/* 2.b add odometry */
 | 
						|
	// general noisemodel for odometry
 | 
						|
	SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
 | 
						|
 | 
						|
	/* Pose2 measurements take (x,y,theta), where theta is taken from the positive x-axis*/
 | 
						|
	Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
 | 
						|
	graph.addConstraint(x1, x2, odom_measurement, odom_model);
 | 
						|
	graph.addConstraint(x2, x3, odom_measurement, odom_model);
 | 
						|
	graph.print("full graph");
 | 
						|
 | 
						|
    /* 3. Create the data structure to hold the initial estinmate to the solution
 | 
						|
     * initialize to noisy points */
 | 
						|
	Values initial;
 | 
						|
	initial.insert(x1, Pose2(0.5, 0.0, 0.2));
 | 
						|
	initial.insert(x2, Pose2(2.3, 0.1,-0.2));
 | 
						|
	initial.insert(x3, Pose2(4.1, 0.1, 0.1));
 | 
						|
	initial.print("initial estimate");
 | 
						|
 | 
						|
	/* 4 Single Step Optimization
 | 
						|
	* optimize using Levenberg-Marquardt optimization with an ordering from colamd */
 | 
						|
	Values result = optimize<Graph, Values>(graph, initial);
 | 
						|
	result.print("final result");
 | 
						|
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 |