gtsam/tests/testSubgraphPreconditioner.cpp

317 lines
11 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testSubgraphConditioner.cpp
* @brief Unit tests for SubgraphPreconditioner
* @author Frank Dellaert
**/
#include <tests/smallExample.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianEliminationTree.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/SubgraphPreconditioner.h>
#include <gtsam/linear/iterative.h>
#include <gtsam/slam/dataset.h>
#include <gtsam/symbolic/SymbolicFactorGraph.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/archive/xml_iarchive.hpp>
#include <boost/assign/std/list.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <boost/serialization/export.hpp>
#include <boost/tuple/tuple.hpp>
using namespace boost::assign;
#include <fstream>
using namespace std;
using namespace gtsam;
using namespace example;
// define keys
// Create key for simulated planar graph
Symbol key(int x, int y) { return symbol_shorthand::X(1000 * x + y); }
/* ************************************************************************* */
TEST(SubgraphPreconditioner, planarOrdering) {
// Check canonical ordering
Ordering expected, ordering = planarOrdering(3);
expected +=
key(3, 3), key(2, 3), key(1, 3),
key(3, 2), key(2, 2), key(1, 2),
key(3, 1), key(2, 1), key(1, 1);
EXPECT(assert_equal(expected, ordering));
}
/* ************************************************************************* */
/** unnormalized error */
static double error(const GaussianFactorGraph& fg, const VectorValues& x) {
double total_error = 0.;
for (const GaussianFactor::shared_ptr& factor : fg)
total_error += factor->error(x);
return total_error;
}
/* ************************************************************************* */
TEST(SubgraphPreconditioner, planarGraph) {
// Check planar graph construction
GaussianFactorGraph A;
VectorValues xtrue;
boost::tie(A, xtrue) = planarGraph(3);
LONGS_EQUAL(13, A.size());
LONGS_EQUAL(9, xtrue.size());
DOUBLES_EQUAL(0, error(A, xtrue), 1e-9); // check zero error for xtrue
// Check that xtrue is optimal
GaussianBayesNet::shared_ptr R1 = A.eliminateSequential();
VectorValues actual = R1->optimize();
EXPECT(assert_equal(xtrue, actual));
}
/* ************************************************************************* */
TEST(SubgraphPreconditioner, splitOffPlanarTree) {
// Build a planar graph
GaussianFactorGraph A;
VectorValues xtrue;
boost::tie(A, xtrue) = planarGraph(3);
// Get the spanning tree and constraints, and check their sizes
GaussianFactorGraph::shared_ptr T, C;
boost::tie(T, C) = splitOffPlanarTree(3, A);
LONGS_EQUAL(9, T->size());
LONGS_EQUAL(4, C->size());
// Check that the tree can be solved to give the ground xtrue
GaussianBayesNet::shared_ptr R1 = T->eliminateSequential();
VectorValues xbar = R1->optimize();
EXPECT(assert_equal(xtrue, xbar));
}
/* ************************************************************************* */
TEST(SubgraphPreconditioner, system) {
// Build a planar graph
GaussianFactorGraph Ab;
VectorValues xtrue;
size_t N = 3;
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
// Get the spanning tree and remaining graph
GaussianFactorGraph::shared_ptr Ab1, Ab2; // A1*x-b1 and A2*x-b2
boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab);
// Eliminate the spanning tree to build a prior
const Ordering ord = planarOrdering(N);
auto Rc1 = Ab1->eliminateSequential(ord); // R1*x-c1
VectorValues xbar = Rc1->optimize(); // xbar = inv(R1)*c1
// Create Subgraph-preconditioned system
VectorValues::shared_ptr xbarShared(
new VectorValues(xbar)); // TODO: horrible
const SubgraphPreconditioner system(Ab2, Rc1, xbarShared);
// Get corresponding matrices for tests. Add dummy factors to Ab2 to make
// sure it works with the ordering.
Ordering ordering = Rc1->ordering(); // not ord in general!
Ab2->add(key(1, 1), Z_2x2, Z_2x1);
Ab2->add(key(1, 2), Z_2x2, Z_2x1);
Ab2->add(key(1, 3), Z_2x2, Z_2x1);
Matrix A, A1, A2;
Vector b, b1, b2;
std::tie(A, b) = Ab.jacobian(ordering);
std::tie(A1, b1) = Ab1->jacobian(ordering);
std::tie(A2, b2) = Ab2->jacobian(ordering);
Matrix R1 = Rc1->matrix(ordering).first;
Matrix Abar(13 * 2, 9 * 2);
Abar.topRows(9 * 2) = Matrix::Identity(9 * 2, 9 * 2);
Abar.bottomRows(8) = A2.topRows(8) * R1.inverse();
// Helper function to vectorize in correct order, which is the order in which
// we eliminated the spanning tree.
auto vec = [ordering](const VectorValues& x) { return x.vector(ordering); };
// Set up y0 as all zeros
const VectorValues y0 = system.zero();
// y1 = perturbed y0
VectorValues y1 = system.zero();
y1[key(3, 3)] = Vector2(1.0, -1.0);
// Check backSubstituteTranspose works with R1
VectorValues actual = Rc1->backSubstituteTranspose(y1);
Vector expected = R1.transpose().inverse() * vec(y1);
EXPECT(assert_equal(expected, vec(actual)));
// Check corresponding x values
// for y = 0, we get xbar:
EXPECT(assert_equal(xbar, system.x(y0)));
// for non-zero y, answer is x = xbar + inv(R1)*y
const Vector expected_x1 = vec(xbar) + R1.inverse() * vec(y1);
const VectorValues x1 = system.x(y1);
EXPECT(assert_equal(expected_x1, vec(x1)));
// Check errors
DOUBLES_EQUAL(0, error(Ab, xbar), 1e-9);
DOUBLES_EQUAL(0, system.error(y0), 1e-9);
DOUBLES_EQUAL(2, error(Ab, x1), 1e-9);
DOUBLES_EQUAL(2, system.error(y1), 1e-9);
// Check that transposeMultiplyAdd <=> y += alpha * Abar' * e
// We check for e1 =[1;0] and e2=[0;1] corresponding to T and C
const double alpha = 0.5;
Errors e1, e2;
for (size_t i = 0; i < 13; i++) {
e1 += i < 9 ? Vector2(1, 1) : Vector2(0, 0);
e2 += i >= 9 ? Vector2(1, 1) : Vector2(0, 0);
}
Vector ee1(13 * 2), ee2(13 * 2);
ee1 << Vector::Ones(9 * 2), Vector::Zero(4 * 2);
ee2 << Vector::Zero(9 * 2), Vector::Ones(4 * 2);
// Check transposeMultiplyAdd for e1
VectorValues y = system.zero();
system.transposeMultiplyAdd(alpha, e1, y);
Vector expected_y = alpha * Abar.transpose() * ee1;
EXPECT(assert_equal(expected_y, vec(y)));
// Check transposeMultiplyAdd for e2
y = system.zero();
system.transposeMultiplyAdd(alpha, e2, y);
expected_y = alpha * Abar.transpose() * ee2;
EXPECT(assert_equal(expected_y, vec(y)));
// Test gradient in y
auto g = system.gradient(y0);
Vector expected_g = Vector::Zero(18);
EXPECT(assert_equal(expected_g, vec(g)));
}
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::JacobianFactor, "JacobianFactor");
// Read from XML file
static GaussianFactorGraph read(const string& name) {
auto inputFile = findExampleDataFile(name);
ifstream is(inputFile);
if (!is.is_open()) throw runtime_error("Cannot find file " + inputFile);
boost::archive::xml_iarchive in_archive(is);
GaussianFactorGraph Ab;
in_archive >> boost::serialization::make_nvp("graph", Ab);
return Ab;
}
TEST(SubgraphSolver, Solves) {
// Create preconditioner
SubgraphPreconditioner system;
// We test on three different graphs
const auto Ab1 = planarGraph(3).get<0>();
const auto Ab2 = read("toy3D");
const auto Ab3 = read("randomGrid3D");
// For all graphs, test solve and solveTranspose
for (const auto& Ab : {Ab1, Ab2, Ab3}) {
// Call build, a non-const method needed to make solve work :-(
KeyInfo keyInfo(Ab);
std::map<Key, Vector> lambda;
system.build(Ab, keyInfo, lambda);
// Create a perturbed (non-zero) RHS
const auto xbar = system.Rc1()->optimize(); // merely for use in zero below
auto values_y = VectorValues::Zero(xbar);
auto it = values_y.begin();
it->second.setConstant(100);
++it;
it->second.setConstant(-100);
// Solve the VectorValues way
auto values_x = system.Rc1()->backSubstitute(values_y);
// Solve the matrix way, this really just checks BN::backSubstitute
// This only works with Rc1 ordering, not with keyInfo !
// TODO(frank): why does this not work with an arbitrary ordering?
const auto ord = system.Rc1()->ordering();
const Matrix R1 = system.Rc1()->matrix(ord).first;
auto ord_y = values_y.vector(ord);
auto vector_x = R1.inverse() * ord_y;
EXPECT(assert_equal(vector_x, values_x.vector(ord)));
// Test that 'solve' does implement x = R^{-1} y
// We do this by asserting it gives same answer as backSubstitute
// Only works with keyInfo ordering:
const auto ordering = keyInfo.ordering();
auto vector_y = values_y.vector(ordering);
const size_t N = R1.cols();
Vector solve_x = Vector::Zero(N);
system.solve(vector_y, solve_x);
EXPECT(assert_equal(values_x.vector(ordering), solve_x));
// Test that transposeSolve does implement x = R^{-T} y
// We do this by asserting it gives same answer as backSubstituteTranspose
auto values_x2 = system.Rc1()->backSubstituteTranspose(values_y);
Vector solveT_x = Vector::Zero(N);
system.transposeSolve(vector_y, solveT_x);
EXPECT(assert_equal(values_x2.vector(ordering), solveT_x));
}
}
/* ************************************************************************* */
TEST(SubgraphPreconditioner, conjugateGradients) {
// Build a planar graph
GaussianFactorGraph Ab;
VectorValues xtrue;
size_t N = 3;
boost::tie(Ab, xtrue) = planarGraph(N); // A*x-b
// Get the spanning tree
GaussianFactorGraph::shared_ptr Ab1, Ab2; // A1*x-b1 and A2*x-b2
boost::tie(Ab1, Ab2) = splitOffPlanarTree(N, Ab);
// Eliminate the spanning tree to build a prior
SubgraphPreconditioner::sharedBayesNet Rc1 =
Ab1->eliminateSequential(); // R1*x-c1
VectorValues xbar = Rc1->optimize(); // xbar = inv(R1)*c1
// Create Subgraph-preconditioned system
VectorValues::shared_ptr xbarShared(
new VectorValues(xbar)); // TODO: horrible
SubgraphPreconditioner system(Ab2, Rc1, xbarShared);
// Create zero config y0 and perturbed config y1
VectorValues y0 = VectorValues::Zero(xbar);
VectorValues y1 = y0;
y1[key(2, 2)] = Vector2(1.0, -1.0);
VectorValues x1 = system.x(y1);
// Solve for the remaining constraints using PCG
ConjugateGradientParameters parameters;
VectorValues actual = conjugateGradients<SubgraphPreconditioner,
VectorValues, Errors>(system, y1, parameters);
EXPECT(assert_equal(y0,actual));
// Compare with non preconditioned version:
VectorValues actual2 = conjugateGradientDescent(Ab, x1, parameters);
EXPECT(assert_equal(xtrue, actual2, 1e-4));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */