gtsam/tests/testGncOptimizer.cpp

159 lines
4.7 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGncOptimizer.cpp
* @brief Unit tests for GncOptimizer class
* @author Jingnan Shi
* @author Luca Carlone
* @author Frank Dellaert
*/
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <tests/smallExample.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using symbol_shorthand::X;
using symbol_shorthand::L;
/* ************************************************************************* */
template <class BaseOptimizerParameters>
class GncParams {
public:
// using BaseOptimizer = BaseOptimizerParameters::OptimizerType;
GncParams(const BaseOptimizerParameters& baseOptimizerParams): baseOptimizerParams(baseOptimizerParams) {}
// default constructor
GncParams(): baseOptimizerParams() {}
BaseOptimizerParameters baseOptimizerParams;
/// any other specific GNC parameters:
};
/* ************************************************************************* */
template<class GncParameters>
class GncOptimizer {
public:
// types etc
private:
NonlinearFactorGraph nfg_;
Values state_;
GncParameters params_;
public:
GncOptimizer(const NonlinearFactorGraph& graph,
const Values& initialValues, const GncParameters& params = GncParameters()) :
nfg_(graph), state_(initialValues), params_(params) {
// TODO: Check that all noise models are Gaussian
}
// Values optimize() const {
// NonlinearFactorGraph currentGraph = graph_;
// for (i : {1, 2, 3}) {
// BaseOptimizer::Optimizer baseOptimizer(currentGraph, initial);
// VALUES currentSolution = baseOptimizer.optimize();
// if (converged) {
// return currentSolution;
// }
// graph_i = this->makeGraph(currentSolution);
// }
//}
//NonlinearFactorGraph makeGraph(const Values& currentSolution) const {
// // calculate some weights
// this->calculateWeights();
// // copy the graph with new weights
//
//}
};
///* ************************************************************************* */
//TEST(GncOptimizer, calculateWeights) {
//}
//
///* ************************************************************************* */
//TEST(GncOptimizer, copyGraph) {
//}
/* ************************************************************************* */
TEST(GncOptimizer, gncParamsConstructor) {
//check params are correctly parsed
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams1(lmParams);
CHECK(lmParams.equals(gncParams1.baseOptimizerParams));
// check also default constructor
GncParams<LevenbergMarquardtParams> gncParams1b;
CHECK(lmParams.equals(gncParams1b.baseOptimizerParams));
// and check params become different if we change lmParams
lmParams.setVerbosity("DELTA");
CHECK(!lmParams.equals(gncParams1.baseOptimizerParams));
// and same for GN
GaussNewtonParams gnParams;
GncParams<GaussNewtonParams> gncParams2(gnParams);
CHECK(gnParams.equals(gncParams2.baseOptimizerParams));
// check default constructor
GncParams<GaussNewtonParams> gncParams2b;
CHECK(gnParams.equals(gncParams2b.baseOptimizerParams));
}
/* ************************************************************************* */
TEST(GncOptimizer, makeGraph) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph(); // just a unary factor on a 2D point
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
// NonlinearFactorGraph actual = gnc.makeGraph(initial);
}
/* ************************************************************************* *
TEST(GncOptimizer, optimize) {
// has to have Gaussian noise models !
auto fg = example::createReallyNonlinearFactorGraph();
Point2 p0(3, 3);
Values initial;
initial.insert(X(1), p0);
LevenbergMarquardtParams lmParams;
GncParams gncParams(lmParams);
auto gnc = GncOptimizer(fg, initial, gncParams);
Values actual = gnc.optimize();
DOUBLES_EQUAL(0, fg.error(actual2), tol);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */