gtsam/gtsam.h

1625 lines
55 KiB
C++

/**
* GTSAM Wrap Module Definition
*
* These are the current classes available through the matlab toolbox interface,
* add more functions/classes as they are available.
*
* Requirements:
* Classes must start with an uppercase letter
* - Can wrap a typedef
* Only one Method/Constructor per line, though methods/constructors can extend across multiple lines
* Methods can return
* - Eigen types: Matrix, Vector
* - C/C++ basic types: string, bool, size_t, size_t, double, char, unsigned char
* - void
* - Any class with which be copied with boost::make_shared()
* - boost::shared_ptr of any object type
* Constructors
* - Overloads are supported
* - A class with no constructors can be returned from other functions but not allocated directly in MATLAB
* Methods
* - Constness has no effect
* - Specify by-value (not reference) return types, even if C++ method returns reference
* - Must start with a lowercase letter
* - Overloads are supported
* Static methods
* - Must start with a letter (upper or lowercase) and use the "static" keyword
* - The first letter will be made uppercase in the generated MATLAB interface
* - Overloads are supported
* Arguments to functions any of
* - Eigen types: Matrix, Vector
* - Eigen types and classes as an optionally const reference
* - C/C++ basic types: string, bool, size_t, size_t, double, char, unsigned char
* - Any class with which be copied with boost::make_shared() (except Eigen)
* - boost::shared_ptr of any object type (except Eigen)
* Comments can use either C++ or C style, with multiple lines
* Namespace definitions
* - Names of namespaces must start with a lowercase letter
* - start a namespace with "namespace {"
* - end a namespace with exactly "}///\namespace [namespace_name]", optionally adding the name of the namespace
* - This ending is not C++ standard, and must contain "}///\namespace" to parse
* - Namespaces can be nested
* Namespace usage
* - Namespaces can be specified for classes in arguments and return values
* - In each case, the namespace must be fully specified, e.g., "namespace1::namespace2::ClassName"
* Using namespace: FIXME: this functionality is currently broken
* - To use a namespace (e.g., generate a "using namespace x" line in cpp files), add "using namespace x;"
* - This declaration applies to all classes *after* the declaration, regardless of brackets
* Includes in C++ wrappers
* - All includes will be collected and added in a single file
* - All namespaces must have angle brackets: <path>
* - No default includes will be added
* Using classes defined in other modules
* - If you are using a class 'OtherClass' not wrapped in this definition file, add "class OtherClass;" to avoid a dependency error
* Virtual inheritance
* - Specify fully-qualified base classes, i.e. "virtual class Derived : module::Base {"
* - Mark with 'virtual' keyword, e.g. "virtual class Base {", and also "virtual class Derived : module::Base {"
* - Forward declarations must also be marked virtual, e.g. "virtual class module::Base;" and
* also "virtual class module::Derived;"
* - Pure virtual (abstract) classes should list no constructors in this interface file
* - Virtual classes must have a clone() function in C++ (though it does not have to be included
* in the MATLAB interface). clone() will be called whenever an object copy is needed, instead
* of using the copy constructor (which is used for non-virtual objects).
* Templates
* - Basic templates are supported either with an explicit list of types to instantiate,
* e.g. template<T = {gtsam::Pose2, gtsam::Rot2, gtsam::Point3}> class Class1 { ... };
* or with typedefs, e.g.
* template<T, U> class Class2 { ... };
* typedef Class2<Type1, Type2> MyInstantiatedClass;
* - To create new instantiations in other modules, you must copy-and-paste the whole class definition
* into the new module, but use only your new instantiation types.
* - When forward-declaring template instantiations, use the generated/typedefed name, e.g.
* class gtsam::Class1Pose2;
* class gtsam::MyInstantiatedClass;
*/
/**
* Status:
* - TODO: global functions
* - TODO: default values for arguments
* - TODO: Handle gtsam::Rot3M conversions to quaternions
*/
namespace gtsam {
//*************************************************************************
// base
//*************************************************************************
virtual class Value {
// No constructors because this is an abstract class
// Testable
void print(string s) const;
// Manifold
size_t dim() const;
};
#include <gtsam/base/LieVector.h>
virtual class LieVector : gtsam::Value {
// Standard constructors
LieVector();
LieVector(Vector v);
// Standard interface
Vector vector() const;
// Testable
void print(string s) const;
bool equals(const gtsam::LieVector& expected, double tol) const;
// Group
static gtsam::LieVector identity();
gtsam::LieVector inverse() const;
gtsam::LieVector compose(const gtsam::LieVector& p) const;
gtsam::LieVector between(const gtsam::LieVector& l2) const;
// Manifold
size_t dim() const;
gtsam::LieVector retract(Vector v) const;
Vector localCoordinates(const gtsam::LieVector& t2) const;
// Lie group
static gtsam::LieVector Expmap(Vector v);
static Vector Logmap(const gtsam::LieVector& p);
};
#include <gtsam/base/LieMatrix.h>
virtual class LieMatrix : gtsam::Value {
// Standard constructors
LieMatrix();
LieMatrix(Matrix v);
// Standard interface
Vector matrix() const;
// Testable
void print(string s) const;
bool equals(const gtsam::LieMatrix& expected, double tol) const;
// Group
static gtsam::LieMatrix identity();
gtsam::LieMatrix inverse() const;
gtsam::LieMatrix compose(const gtsam::LieMatrix& p) const;
gtsam::LieMatrix between(const gtsam::LieMatrix& l2) const;
// Manifold
size_t dim() const;
gtsam::LieMatrix retract(Vector v) const;
Vector localCoordinates(const gtsam::LieMatrix & t2) const;
// Lie group
static gtsam::LieMatrix Expmap(Vector v);
static Vector Logmap(const gtsam::LieMatrix& p);
};
//*************************************************************************
// geometry
//*************************************************************************
virtual class Point2 : gtsam::Value {
// Standard Constructors
Point2();
Point2(double x, double y);
Point2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Point2& pose, double tol) const;
// Group
static gtsam::Point2 identity();
gtsam::Point2 inverse() const;
gtsam::Point2 compose(const gtsam::Point2& p2) const;
gtsam::Point2 between(const gtsam::Point2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Point2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Point2& p) const;
// Lie Group
static gtsam::Point2 Expmap(Vector v);
static Vector Logmap(const gtsam::Point2& p);
// Standard Interface
double x() const;
double y() const;
Vector vector() const;
};
virtual class StereoPoint2 : gtsam::Value {
// Standard Constructors
StereoPoint2();
StereoPoint2(double uL, double uR, double v);
// Testable
void print(string s) const;
bool equals(const gtsam::StereoPoint2& point, double tol) const;
// Group
static gtsam::StereoPoint2 identity();
gtsam::StereoPoint2 inverse() const;
gtsam::StereoPoint2 compose(const gtsam::StereoPoint2& p2) const;
gtsam::StereoPoint2 between(const gtsam::StereoPoint2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::StereoPoint2 retract(Vector v) const;
Vector localCoordinates(const gtsam::StereoPoint2& p) const;
// Lie Group
static gtsam::StereoPoint2 Expmap(Vector v);
static Vector Logmap(const gtsam::StereoPoint2& p);
// Standard Interface
Vector vector() const;
};
virtual class Point3 : gtsam::Value {
// Standard Constructors
Point3();
Point3(double x, double y, double z);
Point3(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Point3& p, double tol) const;
// Group
static gtsam::Point3 identity();
gtsam::Point3 inverse() const;
gtsam::Point3 compose(const gtsam::Point3& p2) const;
gtsam::Point3 between(const gtsam::Point3& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Point3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Point3& p) const;
// Lie Group
static gtsam::Point3 Expmap(Vector v);
static Vector Logmap(const gtsam::Point3& p);
// Standard Interface
Vector vector() const;
double x() const;
double y() const;
double z() const;
};
virtual class Rot2 : gtsam::Value {
// Standard Constructors and Named Constructors
Rot2();
Rot2(double theta);
static gtsam::Rot2 fromAngle(double theta);
static gtsam::Rot2 fromDegrees(double theta);
static gtsam::Rot2 fromCosSin(double c, double s);
// Testable
void print(string s) const;
bool equals(const gtsam::Rot2& rot, double tol) const;
// Group
static gtsam::Rot2 identity();
gtsam::Rot2 inverse();
gtsam::Rot2 compose(const gtsam::Rot2& p2) const;
gtsam::Rot2 between(const gtsam::Rot2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Rot2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Rot2& p) const;
// Lie Group
static gtsam::Rot2 Expmap(Vector v);
static Vector Logmap(const gtsam::Rot2& p);
// Group Action on Point2
gtsam::Point2 rotate(const gtsam::Point2& point) const;
gtsam::Point2 unrotate(const gtsam::Point2& point) const;
// Standard Interface
static gtsam::Rot2 relativeBearing(const gtsam::Point2& d); // Ignoring derivative
static gtsam::Rot2 atan2(double y, double x);
double theta() const;
double degrees() const;
double c() const;
double s() const;
Matrix matrix() const;
};
virtual class Rot3 : gtsam::Value {
// Standard Constructors and Named Constructors
Rot3();
Rot3(Matrix R);
static gtsam::Rot3 Rx(double t);
static gtsam::Rot3 Ry(double t);
static gtsam::Rot3 Rz(double t);
static gtsam::Rot3 RzRyRx(double x, double y, double z); // FIXME: overloaded functions don't work yet
static gtsam::Rot3 RzRyRx(Vector xyz);
static gtsam::Rot3 yaw(double t); // positive yaw is to right (as in aircraft heading)
static gtsam::Rot3 pitch(double t); // positive pitch is up (increasing aircraft altitude)
static gtsam::Rot3 roll(double t); // positive roll is to right (increasing yaw in aircraft)
static gtsam::Rot3 ypr(double y, double p, double r);
static gtsam::Rot3 quaternion(double w, double x, double y, double z);
static gtsam::Rot3 rodriguez(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Rot3& rot, double tol) const;
// Group
static gtsam::Rot3 identity();
gtsam::Rot3 inverse() const;
gtsam::Rot3 compose(const gtsam::Rot3& p2) const;
gtsam::Rot3 between(const gtsam::Rot3& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Rot3 retractCayley(Vector v) const; // FIXME, does not exist in both Matrix and Quaternion options
gtsam::Rot3 retract(Vector v) const;
Vector localCoordinates(const gtsam::Rot3& p) const;
// Group Action on Point3
gtsam::Point3 rotate(const gtsam::Point3& p) const;
gtsam::Point3 unrotate(const gtsam::Point3& p) const;
// Standard Interface
static gtsam::Rot3 Expmap(Vector v);
static Vector Logmap(const gtsam::Rot3& p);
Matrix matrix() const;
Matrix transpose() const;
gtsam::Point3 column(size_t index) const;
Vector xyz() const;
Vector ypr() const;
Vector rpy() const;
double roll() const;
double pitch() const;
double yaw() const;
// Vector toQuaternion() const; // FIXME: Can't cast to Vector properly
};
virtual class Pose2 : gtsam::Value {
// Standard Constructor
Pose2();
Pose2(double x, double y, double theta);
Pose2(double theta, const gtsam::Point2& t);
Pose2(const gtsam::Rot2& r, const gtsam::Point2& t);
Pose2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Pose2& pose, double tol) const;
// Group
static gtsam::Pose2 identity();
gtsam::Pose2 inverse() const;
gtsam::Pose2 compose(const gtsam::Pose2& p2) const;
gtsam::Pose2 between(const gtsam::Pose2& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Pose2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Pose2& p) const;
// Lie Group
static gtsam::Pose2 Expmap(Vector v);
static Vector Logmap(const gtsam::Pose2& p);
Matrix adjointMap() const;
Vector adjoint(const Vector& xi) const;
static Matrix wedge(double vx, double vy, double w);
// Group Actions on Point2
gtsam::Point2 transform_from(const gtsam::Point2& p) const;
gtsam::Point2 transform_to(const gtsam::Point2& p) const;
// Standard Interface
double x() const;
double y() const;
double theta() const;
gtsam::Rot2 bearing(const gtsam::Point2& point) const;
double range(const gtsam::Point2& point) const;
gtsam::Point2 translation() const;
gtsam::Rot2 rotation() const;
Matrix matrix() const;
};
virtual class Pose3 : gtsam::Value {
// Standard Constructors
Pose3();
Pose3(const gtsam::Pose3& pose);
Pose3(const gtsam::Rot3& r, const gtsam::Point3& t);
Pose3(const gtsam::Pose2& pose2); // FIXME: shadows Pose3(Pose3 pose)
Pose3(Matrix t);
// Testable
void print(string s) const;
bool equals(const gtsam::Pose3& pose, double tol) const;
// Group
static gtsam::Pose3 identity();
gtsam::Pose3 inverse() const;
gtsam::Pose3 compose(const gtsam::Pose3& p2) const;
gtsam::Pose3 between(const gtsam::Pose3& p2) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Pose3 retract(Vector v) const;
gtsam::Pose3 retractFirstOrder(Vector v) const;
Vector localCoordinates(const gtsam::Pose3& T2) const;
// Lie Group
static gtsam::Pose3 Expmap(Vector v);
static Vector Logmap(const gtsam::Pose3& p);
Matrix adjointMap() const;
Vector adjoint(const Vector& xi) const;
static Matrix wedge(double wx, double wy, double wz, double vx, double vy, double vz);
// Group Action on Point3
gtsam::Point3 transform_from(const gtsam::Point3& p) const;
gtsam::Point3 transform_to(const gtsam::Point3& p) const;
// Standard Interface
gtsam::Rot3 rotation() const;
gtsam::Point3 translation() const;
double x() const;
double y() const;
double z() const;
Matrix matrix() const;
gtsam::Pose3 transform_to(const gtsam::Pose3& pose) const; // FIXME: shadows other transform_to()
double range(const gtsam::Point3& point);
double range(const gtsam::Pose3& pose);
};
virtual class Cal3_S2 : gtsam::Value {
// Standard Constructors
Cal3_S2();
Cal3_S2(double fx, double fy, double s, double u0, double v0);
Cal3_S2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Cal3_S2& rhs, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Cal3_S2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Cal3_S2& c) const;
// Action on Point2
gtsam::Point2 calibrate(const gtsam::Point2& p) const;
gtsam::Point2 uncalibrate(const gtsam::Point2& p) const;
// Standard Interface
double fx() const;
double fy() const;
double skew() const;
double px() const;
double py() const;
gtsam::Point2 principalPoint() const;
Vector vector() const;
Matrix matrix() const;
Matrix matrix_inverse() const;
};
#include <gtsam/geometry/Cal3DS2.h>
virtual class Cal3DS2 : gtsam::Value {
// Standard Constructors
Cal3DS2();
Cal3DS2(double fx, double fy, double s, double u0, double v0, double k1, double k2, double k3, double k4);
Cal3DS2(Vector v);
// Testable
void print(string s) const;
bool equals(const gtsam::Cal3DS2& rhs, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::Cal3DS2 retract(Vector v) const;
Vector localCoordinates(const gtsam::Cal3DS2& c) const;
// Action on Point2
gtsam::Point2 uncalibrate(const gtsam::Point2& p) const;
// TODO: D2d functions that start with an uppercase letter
// Standard Interface
double fx() const;
double fy() const;
double skew() const;
double px() const;
double py() const;
Vector vector() const;
Vector k() const;
//Matrix K() const; //FIXME: Uppercase
};
class Cal3_S2Stereo {
// Standard Constructors
Cal3_S2Stereo();
Cal3_S2Stereo(double fx, double fy, double s, double u0, double v0, double b);
// Testable
void print(string s) const;
bool equals(const gtsam::Cal3_S2Stereo& pose, double tol) const;
// Standard Interface
double fx() const;
double fy() const;
double skew() const;
double px() const;
double py() const;
gtsam::Point2 principalPoint() const;
double baseline() const;
};
virtual class CalibratedCamera : gtsam::Value {
// Standard Constructors and Named Constructors
CalibratedCamera();
CalibratedCamera(const gtsam::Pose3& pose);
CalibratedCamera(const Vector& v);
static gtsam::CalibratedCamera Level(const gtsam::Pose2& pose2, double height);
// Testable
void print(string s) const;
bool equals(const gtsam::CalibratedCamera& camera, double tol) const;
// Manifold
static size_t Dim();
size_t dim() const;
gtsam::CalibratedCamera retract(const Vector& d) const;
Vector localCoordinates(const gtsam::CalibratedCamera& T2) const;
// Group
gtsam::CalibratedCamera compose(const gtsam::CalibratedCamera& c) const;
gtsam::CalibratedCamera inverse() const;
// Action on Point3
gtsam::Point2 project(const gtsam::Point3& point) const;
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
// Standard Interface
gtsam::Pose3 pose() const;
double range(const gtsam::Point3& p) const; // TODO: Other overloaded range methods
};
virtual class SimpleCamera : gtsam::Value {
// Standard Constructors and Named Constructors
SimpleCamera();
SimpleCamera(const gtsam::Pose3& pose);
SimpleCamera(const gtsam::Pose3& pose, const gtsam::Cal3_S2& K);
static gtsam::SimpleCamera Level(const gtsam::Cal3_S2& K,
const gtsam::Pose2& pose, double height);
static gtsam::SimpleCamera Level(const gtsam::Pose2& pose, double height); // FIXME overload
static gtsam::SimpleCamera Lookat(const gtsam::Point3& eye,
const gtsam::Point3& target, const gtsam::Point3& upVector,
const gtsam::Cal3_S2& K);
// Testable
void print(string s) const;
bool equals(const gtsam::SimpleCamera& camera, double tol) const;
// Standard Interface
gtsam::Pose3 pose() const;
gtsam::Cal3_S2 calibration();
// Manifold
gtsam::SimpleCamera retract(const Vector& d) const;
Vector localCoordinates(const gtsam::SimpleCamera& T2) const;
size_t dim() const;
static size_t Dim();
// Transformations and measurement functions
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const;
gtsam::Point2 project(const gtsam::Point3& point);
gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const;
double range(const gtsam::Point3& point);
double range(const gtsam::Pose3& point); // FIXME, overload
};
//*************************************************************************
// inference
//*************************************************************************
class Permutation {
// Standard Constructors and Named Constructors
Permutation();
Permutation(size_t nVars);
static gtsam::Permutation Identity(size_t nVars);
// FIXME: Cannot currently wrap std::vector
//static gtsam::Permutation PullToFront(const vector<size_t>& toFront, size_t size, bool filterDuplicates);
//static gtsam::Permutation PushToBack(const vector<size_t>& toBack, size_t size, bool filterDuplicates = false);
// Testable
void print(string s) const;
bool equals(const gtsam::Permutation& rhs, double tol) const;
// Standard interface
size_t at(size_t variable) const;
size_t size() const;
bool empty() const;
void resize(size_t newSize);
gtsam::Permutation* permute(const gtsam::Permutation& permutation) const;
gtsam::Permutation* inverse() const;
};
class IndexFactor {
// Standard Constructors and Named Constructors
IndexFactor();
IndexFactor(size_t j);
IndexFactor(size_t j1, size_t j2);
IndexFactor(size_t j1, size_t j2, size_t j3);
IndexFactor(size_t j1, size_t j2, size_t j3, size_t j4);
IndexFactor(size_t j1, size_t j2, size_t j3, size_t j4, size_t j5);
IndexFactor(size_t j1, size_t j2, size_t j3, size_t j4, size_t j5, size_t j6);
// FIXME: Must wrap std::set<Index> for this to work
//IndexFactor(const std::set<Index>& js);
// From Factor
size_t size() const;
void print(string s) const;
bool equals(const gtsam::IndexFactor& other, double tol) const;
// FIXME: Need to wrap std::vector<KeyType>
//std::vector<KeyType>& keys();
};
class IndexConditional {
// Standard Constructors and Named Constructors
IndexConditional();
IndexConditional(size_t key);
IndexConditional(size_t key, size_t parent);
IndexConditional(size_t key, size_t parent1, size_t parent2);
IndexConditional(size_t key, size_t parent1, size_t parent2, size_t parent3);
// FIXME: Must wrap std::vector<KeyType> for this to work
//IndexFactor(size_t key, const std::vector<KeyType>& parents);
//IndexConditional(const std::vector<Index>& keys, size_t nrFrontals);
//template<class KEYS> static shared_ptr FromKeys(const KEYS& keys, size_t nrFrontals);
// Testable
void print(string s) const;
bool equals(const gtsam::IndexConditional& other, double tol) const;
// Standard interface
size_t nrFrontals() const;
size_t nrParents() const;
gtsam::IndexFactor* toFactor() const;
};
#include <gtsam/inference/SymbolicFactorGraph.h>
class SymbolicBayesNet {
// Standard Constructors and Named Constructors
SymbolicBayesNet();
SymbolicBayesNet(const gtsam::SymbolicBayesNet& bn);
SymbolicBayesNet(const gtsam::IndexConditional* conditional);
// Testable
void print(string s) const;
bool equals(const gtsam::SymbolicBayesNet& other, double tol) const;
// Standard interface
size_t size() const;
void push_back(const gtsam::IndexConditional* conditional);
// FIXME: cannot overload functions
//void push_back(const SymbolicBayesNet bn);
void push_front(const gtsam::IndexConditional* conditional);
// FIXME: cannot overload functions
//void push_front(const SymbolicBayesNet bn);
void pop_front();
void permuteWithInverse(const gtsam::Permutation& inversePermutation);
bool permuteSeparatorWithInverse(const gtsam::Permutation& inversePermutation);
};
#include <gtsam/inference/SymbolicFactorGraph.h>
class SymbolicBayesTree {
// Standard Constructors and Named Constructors
SymbolicBayesTree();
SymbolicBayesTree(const gtsam::SymbolicBayesNet& bn);
SymbolicBayesTree(const gtsam::SymbolicBayesTree& other);
// FIXME: wrap needs to understand std::list
//SymbolicBayesTree(const gtsam::SymbolicBayesNet& bayesNet, std::list<gtsam::SymbolicBayesTree> subtrees);
// Testable
void print(string s) const;
bool equals(const gtsam::SymbolicBayesTree& other, double tol) const;
// Standard interface
size_t size() const;
void saveGraph(string s) const;
void clear();
// TODO: There are many other BayesTree member functions which might be of use
};
class SymbolicFactorGraph {
// Standard Constructors and Named Constructors
SymbolicFactorGraph();
SymbolicFactorGraph(const gtsam::SymbolicBayesNet& bayesNet);
SymbolicFactorGraph(const gtsam::SymbolicBayesTree& bayesTree);
// From FactorGraph
void push_back(gtsam::IndexFactor* factor);
void print(string s) const;
bool equals(const gtsam::SymbolicFactorGraph& rhs, double tol) const;
size_t size() const;
// Standard interface
// FIXME: Must wrap FastSet<Index> for this to work
//FastSet<Index> keys() const;
};
#include <gtsam/inference/SymbolicSequentialSolver.h>
class SymbolicSequentialSolver {
// Standard Constructors and Named Constructors
SymbolicSequentialSolver(const gtsam::SymbolicFactorGraph& factorGraph);
SymbolicSequentialSolver(const gtsam::SymbolicFactorGraph* factorGraph, const gtsam::VariableIndex* variableIndex);
// Testable
void print(string s) const;
bool equals(const gtsam::SymbolicSequentialSolver& rhs, double tol) const;
// Standard interface
gtsam::SymbolicBayesNet* eliminate() const;
};
#include <gtsam/inference/SymbolicMultifrontalSolver.h>
class SymbolicMultifrontalSolver {
// Standard Constructors and Named Constructors
SymbolicMultifrontalSolver(const gtsam::SymbolicFactorGraph& factorGraph);
SymbolicMultifrontalSolver(const gtsam::SymbolicFactorGraph* factorGraph, const gtsam::VariableIndex* variableIndex);
// Testable
void print(string s) const;
bool equals(const gtsam::SymbolicMultifrontalSolver& rhs, double tol) const;
// Standard interface
gtsam::SymbolicBayesTree* eliminate() const;
};
#include <gtsam/inference/SymbolicFactorGraph.h>
class VariableIndex {
// Standard Constructors and Named Constructors
VariableIndex();
// FIXME: Handle templates somehow
//template<class FactorGraph> VariableIndex(const FactorGraph& factorGraph, size_t nVariables);
//template<class FactorGraph> VariableIndex(const FactorGraph& factorGraph);
VariableIndex(const gtsam::SymbolicFactorGraph& factorGraph);
VariableIndex(const gtsam::SymbolicFactorGraph& factorGraph, size_t nVariables);
// VariableIndex(const gtsam::GaussianFactorGraph& factorGraph);
// VariableIndex(const gtsam::GaussianFactorGraph& factorGraph, size_t nVariables);
// VariableIndex(const gtsam::NonlinearFactorGraph& factorGraph);
// VariableIndex(const gtsam::NonlinearFactorGraph& factorGraph, size_t nVariables);
VariableIndex(const gtsam::VariableIndex& other);
// Testable
bool equals(const gtsam::VariableIndex& other, double tol) const;
void print(string s) const;
// Standard interface
size_t size() const;
size_t nFactors() const;
size_t nEntries() const;
void permuteInPlace(const gtsam::Permutation& permutation);
};
//*************************************************************************
// linear
//*************************************************************************
namespace noiseModel {
#include <gtsam/linear/NoiseModel.h>
virtual class Base {
};
virtual class Gaussian : gtsam::noiseModel::Base {
static gtsam::noiseModel::Gaussian* SqrtInformation(Matrix R);
static gtsam::noiseModel::Gaussian* Covariance(Matrix R);
// Matrix R() const; // FIXME: cannot parse!!!
void print(string s) const;
};
virtual class Diagonal : gtsam::noiseModel::Gaussian {
static gtsam::noiseModel::Diagonal* Sigmas(Vector sigmas);
static gtsam::noiseModel::Diagonal* Variances(Vector variances);
static gtsam::noiseModel::Diagonal* Precisions(Vector precisions);
// Matrix R() const; // FIXME: cannot parse!!!
void print(string s) const;
};
virtual class Isotropic : gtsam::noiseModel::Diagonal {
static gtsam::noiseModel::Isotropic* Sigma(size_t dim, double sigma);
static gtsam::noiseModel::Isotropic* Variance(size_t dim, double varianace);
static gtsam::noiseModel::Isotropic* Precision(size_t dim, double precision);
void print(string s) const;
};
virtual class Unit : gtsam::noiseModel::Isotropic {
static gtsam::noiseModel::Unit* Create(size_t dim);
void print(string s) const;
};
}///\namespace noiseModel
#include <gtsam/linear/Sampler.h>
class Sampler {
Sampler(gtsam::noiseModel::Diagonal* model, int seed);
Sampler(Vector sigmas, int seed);
Sampler(int seed);
size_t dim() const;
Vector sigmas() const;
gtsam::noiseModel::Diagonal* model() const;
Vector sample();
Vector sampleNewModel(gtsam::noiseModel::Diagonal* model);
};
class VectorValues {
VectorValues();
VectorValues(size_t nVars, size_t varDim);
void print(string s) const;
bool equals(const gtsam::VectorValues& expected, double tol) const;
size_t size() const;
void insert(size_t j, Vector value);
};
class GaussianConditional {
GaussianConditional(size_t key, Vector d, Matrix R, Vector sigmas);
GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S,
Vector sigmas);
GaussianConditional(size_t key, Vector d, Matrix R, size_t name1, Matrix S,
size_t name2, Matrix T, Vector sigmas);
void print(string s) const;
bool equals(const gtsam::GaussianConditional &cg, double tol) const;
};
class GaussianDensity {
GaussianDensity(size_t key, Vector d, Matrix R, Vector sigmas);
void print(string s) const;
Vector mean() const;
Matrix information() const;
Matrix covariance() const;
};
class GaussianBayesNet {
GaussianBayesNet();
void print(string s) const;
bool equals(const gtsam::GaussianBayesNet& cbn, double tol) const;
void push_back(gtsam::GaussianConditional* conditional);
void push_front(gtsam::GaussianConditional* conditional);
};
virtual class GaussianFactor {
void print(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
double error(const gtsam::VectorValues& c) const;
gtsam::GaussianFactor* negate() const;
size_t size() const;
};
virtual class JacobianFactor : gtsam::GaussianFactor {
JacobianFactor();
JacobianFactor(Vector b_in);
JacobianFactor(size_t i1, Matrix A1, Vector b,
const gtsam::noiseModel::Diagonal* model);
JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, Vector b,
const gtsam::noiseModel::Diagonal* model);
JacobianFactor(size_t i1, Matrix A1, size_t i2, Matrix A2, size_t i3, Matrix A3,
Vector b, const gtsam::noiseModel::Diagonal* model);
JacobianFactor(const gtsam::GaussianFactor& factor);
void print(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
bool empty() const;
size_t size() const;
Vector getb() const;
double error(const gtsam::VectorValues& c) const;
gtsam::GaussianConditional* eliminateFirst();
gtsam::GaussianFactor* negate() const;
};
virtual class HessianFactor : gtsam::GaussianFactor {
HessianFactor(const gtsam::HessianFactor& gf);
HessianFactor();
HessianFactor(size_t j, Matrix G, Vector g, double f);
HessianFactor(size_t j, Vector mu, Matrix Sigma);
HessianFactor(size_t j1, size_t j2, Matrix G11, Matrix G12, Vector g1, Matrix G22,
Vector g2, double f);
HessianFactor(size_t j1, size_t j2, size_t j3, Matrix G11, Matrix G12, Matrix G13,
Vector g1, Matrix G22, Matrix G23, Vector g2, Matrix G33, Vector g3,
double f);
HessianFactor(const gtsam::GaussianConditional& cg);
HessianFactor(const gtsam::GaussianFactor& factor);
size_t size() const;
void print(string s) const;
bool equals(const gtsam::GaussianFactor& lf, double tol) const;
double error(const gtsam::VectorValues& c) const;
gtsam::GaussianFactor* negate() const;
};
class GaussianFactorGraph {
GaussianFactorGraph();
GaussianFactorGraph(const gtsam::GaussianBayesNet& CBN);
// From FactorGraph
void print(string s) const;
bool equals(const gtsam::GaussianFactorGraph& lfgraph, double tol) const;
size_t size() const;
gtsam::GaussianFactor* at(size_t idx) const;
// Building the graph
void push_back(gtsam::GaussianFactor* factor);
void add(Vector b);
void add(size_t key1, Matrix A1, Vector b, const gtsam::noiseModel::Diagonal* model);
void add(size_t key1, Matrix A1, size_t key2, Matrix A2, Vector b,
const gtsam::noiseModel::Diagonal* model);
void add(size_t key1, Matrix A1, size_t key2, Matrix A2, size_t key3, Matrix A3,
Vector b, const gtsam::noiseModel::Diagonal* model);
// error and probability
double error(const gtsam::VectorValues& c) const;
double probPrime(const gtsam::VectorValues& c) const;
// combining
static gtsam::GaussianFactorGraph combine2(
const gtsam::GaussianFactorGraph& lfg1,
const gtsam::GaussianFactorGraph& lfg2);
void combine(const gtsam::GaussianFactorGraph& lfg);
// Conversion to matrices
Matrix sparseJacobian_() const;
Matrix denseJacobian() const;
Matrix denseHessian() const;
};
class GaussianISAM {
GaussianISAM();
void saveGraph(string s) const;
gtsam::GaussianFactor* marginalFactor(size_t j) const;
gtsam::GaussianBayesNet* marginalBayesNet(size_t key) const;
Matrix marginalCovariance(size_t key) const;
gtsam::GaussianBayesNet* jointBayesNet(size_t key1, size_t key2) const;
};
#include <gtsam/linear/GaussianSequentialSolver.h>
class GaussianSequentialSolver {
GaussianSequentialSolver(const gtsam::GaussianFactorGraph& graph,
bool useQR);
gtsam::GaussianBayesNet* eliminate() const;
gtsam::VectorValues* optimize() const;
gtsam::GaussianFactor* marginalFactor(size_t j) const;
Matrix marginalCovariance(size_t j) const;
};
#include <gtsam/linear/KalmanFilter.h>
class KalmanFilter {
KalmanFilter(size_t n);
// gtsam::GaussianDensity* init(Vector x0, const gtsam::SharedDiagonal& P0);
gtsam::GaussianDensity* init(Vector x0, Matrix P0);
void print(string s) const;
static size_t step(gtsam::GaussianDensity* p);
gtsam::GaussianDensity* predict(gtsam::GaussianDensity* p, Matrix F,
Matrix B, Vector u, const gtsam::noiseModel::Diagonal* modelQ);
gtsam::GaussianDensity* predictQ(gtsam::GaussianDensity* p, Matrix F,
Matrix B, Vector u, Matrix Q);
gtsam::GaussianDensity* predict2(gtsam::GaussianDensity* p, Matrix A0,
Matrix A1, Vector b, const gtsam::noiseModel::Diagonal* model);
gtsam::GaussianDensity* update(gtsam::GaussianDensity* p, Matrix H,
Vector z, const gtsam::noiseModel::Diagonal* model);
gtsam::GaussianDensity* updateQ(gtsam::GaussianDensity* p, Matrix H,
Vector z, Matrix Q);
};
//*************************************************************************
// nonlinear
//*************************************************************************
#include <gtsam/nonlinear/Symbol.h>
class Symbol {
Symbol(char c, size_t j);
Symbol(size_t k);
void print(string s) const;
size_t key() const;
size_t index() const;
char chr() const;
};
#include <gtsam/nonlinear/Ordering.h>
class Ordering {
// Standard Constructors and Named Constructors
Ordering();
// Testable
void print(string s) const;
bool equals(const gtsam::Ordering& ord, double tol) const;
// Standard interface
size_t nVars() const;
size_t size() const;
size_t at(size_t key) const;
bool exists(size_t key) const;
void insert(size_t key, size_t order);
void push_back(size_t key);
void permuteWithInverse(const gtsam::Permutation& inversePermutation);
gtsam::InvertedOrdering invert() const;
};
class InvertedOrdering {
InvertedOrdering();
// FIXME: add bracket operator overload
bool empty() const;
size_t size() const;
bool count(size_t index) const; // Use as a boolean function with implicit cast
void clear();
};
class NonlinearFactorGraph {
NonlinearFactorGraph();
void print(string s) const;
double error(const gtsam::Values& c) const;
double probPrime(const gtsam::Values& c) const;
gtsam::NonlinearFactor* at(size_t i) const;
void add(const gtsam::NonlinearFactor* factor);
gtsam::Ordering* orderingCOLAMD(const gtsam::Values& c) const;
// Ordering* orderingCOLAMDConstrained(const gtsam::Values& c, const std::map<gtsam::Key,int>& constraints) const;
gtsam::GaussianFactorGraph* linearize(const gtsam::Values& c, const gtsam::Ordering& ordering) const;
gtsam::NonlinearFactorGraph clone() const;
};
virtual class NonlinearFactor {
void print(string s) const;
void equals(const gtsam::NonlinearFactor& other, double tol) const;
gtsam::KeyVector keys() const;
size_t size() const;
size_t dim() const;
double error(const gtsam::Values& c) const;
bool active(const gtsam::Values& c) const;
gtsam::GaussianFactor* linearize(const gtsam::Values& c, const gtsam::Ordering& ordering) const;
gtsam::NonlinearFactor* clone() const;
// gtsam::NonlinearFactor* rekey(const gtsam::KeyVector& newKeys) const; //FIXME: Conversion from KeyVector to std::vector does not happen
};
class Values {
Values();
size_t size() const;
void print(string s) const;
void insert(size_t j, const gtsam::Value& value);
bool exists(size_t j) const;
gtsam::Value at(size_t j) const;
};
// Actually a FastList<Key>
#include <gtsam/nonlinear/Key.h>
class KeyList {
KeyList();
KeyList(const gtsam::KeyList& other);
// Note: no print function
// common STL methods
size_t size() const;
bool empty() const;
void clear();
// structure specific methods
size_t front() const;
size_t back() const;
void push_back(size_t key);
void push_front(size_t key);
void sort();
void remove(size_t key);
};
// Actually a FastSet<Key>
#include <gtsam/nonlinear/Key.h>
class KeySet {
KeySet();
KeySet(const gtsam::KeySet& other);
// Testable
void print(string s) const;
bool equals(const gtsam::KeySet& other) const;
// common STL methods
size_t size() const;
bool empty() const;
void clear();
// structure specific methods
void insert(size_t key);
bool erase(size_t key); // returns true if value was removed
bool count(size_t key) const; // returns true if value exists
};
// Actually a FastVector<Key>
#include <gtsam/nonlinear/Key.h>
class KeyVector {
KeyVector();
KeyVector(const gtsam::KeyVector& other);
KeyVector(const gtsam::KeySet& other);
KeyVector(const gtsam::KeyList& other);
// Note: no print function
// common STL methods
size_t size() const;
bool empty() const;
void clear();
// structure specific methods
size_t at(size_t i) const;
size_t front() const;
size_t back() const;
void push_back(size_t key) const;
};
class Marginals {
Marginals(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& solution);
void print(string s) const;
Matrix marginalCovariance(size_t variable) const;
Matrix marginalInformation(size_t variable) const;
};
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
class LevenbergMarquardtParams {
LevenbergMarquardtParams();
void print(string s) const;
size_t getMaxIterations() const;
double getRelativeErrorTol() const;
double getAbsoluteErrorTol() const;
double getErrorTol() const;
string getVerbosity() const;
void setMaxIterations(size_t value);
void setRelativeErrorTol(double value);
void setAbsoluteErrorTol(double value);
void setErrorTol(double value);
void setVerbosity(string s);
bool isMultifrontal() const;
bool isSequential() const;
bool isCholmod() const;
bool isCG() const;
double getlambdaInitial() const ;
double getlambdaFactor() const ;
double getlambdaUpperBound() const;
string getVerbosityLM() const ;
void setlambdaInitial(double value);
void setlambdaFactor(double value);
void setlambdaUpperBound(double value);
void setVerbosityLM(string s);
};
//*************************************************************************
// Nonlinear factor types
//*************************************************************************
template<T = {gtsam::LieVector, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2, gtsam::CalibratedCamera, gtsam::SimpleCamera}>
virtual class PriorFactor : gtsam::NonlinearFactor {
PriorFactor(size_t key, const T& prior, const gtsam::noiseModel::Base* noiseModel);
};
template<T = {gtsam::LieVector, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3}>
virtual class BetweenFactor : gtsam::NonlinearFactor {
BetweenFactor(size_t key1, size_t key2, const T& relativePose, const gtsam::noiseModel::Base* noiseModel);
};
template<T = {gtsam::LieVector, gtsam::Point2, gtsam::StereoPoint2, gtsam::Point3, gtsam::Rot2, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::Cal3_S2, gtsam::CalibratedCamera, gtsam::SimpleCamera}>
virtual class NonlinearEquality : gtsam::NonlinearFactor {
// Constructor - forces exact evaluation
NonlinearEquality(size_t j, const T& feasible);
// Constructor - allows inexact evaluation
NonlinearEquality(size_t j, const T& feasible, double error_gain);
};
template<POSE, POINT>
virtual class RangeFactor : gtsam::NonlinearFactor {
RangeFactor(size_t key1, size_t key2, double measured, const gtsam::noiseModel::Base* noiseModel);
};
typedef gtsam::RangeFactor<gtsam::Pose2, gtsam::Point2> RangeFactor2D;
typedef gtsam::RangeFactor<gtsam::Pose3, gtsam::Point3> RangeFactor3D;
typedef gtsam::RangeFactor<gtsam::CalibratedCamera, gtsam::Point3> RangeFactorCalibratedCamera;
typedef gtsam::RangeFactor<gtsam::SimpleCamera, gtsam::Point3> RangeFactorSimpleCamera;
template<POSE, POINT, ROT>
virtual class BearingFactor : gtsam::NonlinearFactor {
BearingFactor(size_t key1, size_t key2, const ROT& measured, const gtsam::noiseModel::Base* noiseModel);
};
typedef gtsam::BearingFactor<gtsam::Pose2, gtsam::Point2, gtsam::Rot2> BearingFactor2D;
#include <gtsam/slam/ProjectionFactor.h>
template<POSE, LANDMARK, CALIBRATION>
virtual class GenericProjectionFactor : gtsam::NonlinearFactor {
GenericProjectionFactor(const gtsam::Point2& measured, const gtsam::noiseModel::Base* noiseModel,
size_t poseKey, size_t pointKey, const CALIBRATION* k);
gtsam::Point2 measured() const;
CALIBRATION* calibration() const;
};
typedef gtsam::GenericProjectionFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2> GenericProjectionFactorCal3_S2;
typedef gtsam::GenericProjectionFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3DS2> GenericProjectionFactorCal3DS2;
}///\namespace gtsam
//*************************************************************************
// Pose2SLAM
//*************************************************************************
namespace pose2SLAM {
#include <gtsam/slam/pose2SLAM.h>
class Values {
Values();
Values(const pose2SLAM::Values& values);
size_t size() const;
void print(string s) const;
bool exists(size_t key);
gtsam::KeyVector keys() const; // Note the switch to KeyVector, rather than KeyList
static pose2SLAM::Values Circle(size_t n, double R);
void insertPose(size_t key, const gtsam::Pose2& pose);
void updatePose(size_t key, const gtsam::Pose2& pose);
gtsam::Pose2 pose(size_t i);
Matrix poses() const;
};
#include <gtsam/slam/pose2SLAM.h>
class Graph {
Graph();
Graph(const gtsam::NonlinearFactorGraph& graph);
Graph(const pose2SLAM::Graph& graph);
// FactorGraph
void print(string s) const;
bool equals(const pose2SLAM::Graph& fg, double tol) const;
size_t size() const;
bool empty() const;
void remove(size_t i);
size_t nrFactors() const;
gtsam::NonlinearFactor* at(size_t i) const;
// NonlinearFactorGraph
double error(const pose2SLAM::Values& values) const;
double probPrime(const pose2SLAM::Values& values) const;
gtsam::Ordering* orderingCOLAMD(const pose2SLAM::Values& values) const;
gtsam::GaussianFactorGraph* linearize(const pose2SLAM::Values& values,
const gtsam::Ordering& ordering) const;
// pose2SLAM-specific
void addPoseConstraint(size_t key, const gtsam::Pose2& pose);
void addPosePrior(size_t key, const gtsam::Pose2& pose, const gtsam::noiseModel::Base* noiseModel);
void addRelativePose(size_t key1, size_t key2, const gtsam::Pose2& relativePoseMeasurement, const gtsam::noiseModel::Base* noiseModel);
pose2SLAM::Values optimize(const pose2SLAM::Values& initialEstimate, size_t verbosity) const;
pose2SLAM::Values optimizeSPCG(const pose2SLAM::Values& initialEstimate, size_t verbosity) const;
gtsam::Marginals marginals(const pose2SLAM::Values& solution) const;
};
}///\namespace pose2SLAM
//*************************************************************************
// Pose3SLAM
//*************************************************************************
namespace pose3SLAM {
#include <gtsam/slam/pose3SLAM.h>
class Values {
Values();
Values(const pose3SLAM::Values& values);
size_t size() const;
void print(string s) const;
bool exists(size_t key);
gtsam::KeyVector keys() const; // Note the switch to KeyVector, rather than KeyList
static pose3SLAM::Values Circle(size_t n, double R);
void insertPose(size_t key, const gtsam::Pose3& pose);
void updatePose(size_t key, const gtsam::Pose3& pose);
gtsam::Pose3 pose(size_t i);
Matrix translations() const;
};
#include <gtsam/slam/pose3SLAM.h>
class Graph {
Graph();
Graph(const gtsam::NonlinearFactorGraph& graph);
Graph(const pose3SLAM::Graph& graph);
// FactorGraph
void print(string s) const;
bool equals(const pose3SLAM::Graph& fg, double tol) const;
size_t size() const;
bool empty() const;
void remove(size_t i);
size_t nrFactors() const;
gtsam::NonlinearFactor* at(size_t i) const;
// NonlinearFactorGraph
double error(const pose3SLAM::Values& values) const;
double probPrime(const pose3SLAM::Values& values) const;
gtsam::Ordering* orderingCOLAMD(const pose3SLAM::Values& values) const;
gtsam::GaussianFactorGraph* linearize(const pose3SLAM::Values& values,
const gtsam::Ordering& ordering) const;
// pose3SLAM-specific
void addPoseConstraint(size_t i, const gtsam::Pose3& p);
void addPosePrior(size_t key, const gtsam::Pose3& p, const gtsam::noiseModel::Base* model);
void addRelativePose(size_t key1, size_t key2, const gtsam::Pose3& z, const gtsam::noiseModel::Base* model);
pose3SLAM::Values optimize(const pose3SLAM::Values& initialEstimate, size_t verbosity) const;
// FIXME gtsam::LevenbergMarquardtOptimizer optimizer(const pose3SLAM::Values& initialEstimate, const gtsam::LevenbergMarquardtParams& parameters) const;
gtsam::Marginals marginals(const pose3SLAM::Values& solution) const;
};
}///\namespace pose3SLAM
//*************************************************************************
// planarSLAM
//*************************************************************************
namespace planarSLAM {
#include <gtsam/slam/planarSLAM.h>
class Values {
Values();
Values(const planarSLAM::Values& values);
size_t size() const;
void print(string s) const;
bool exists(size_t key);
gtsam::KeyVector keys() const; // Note the switch to KeyVector, rather than KeyList
// inherited from pose2SLAM
static planarSLAM::Values Circle(size_t n, double R);
void insertPose(size_t key, const gtsam::Pose2& pose);
void updatePose(size_t key, const gtsam::Pose2& pose);
gtsam::Pose2 pose(size_t i);
Matrix poses() const;
// Access to poses
planarSLAM::Values allPoses() const;
size_t nrPoses() const;
gtsam::KeyVector poseKeys() const; // Note the switch to KeyVector, rather than KeyList
// Access to points
planarSLAM::Values allPoints() const;
size_t nrPoints() const;
gtsam::KeyVector pointKeys() const; // Note the switch to KeyVector, rather than KeyList
void insertPoint(size_t key, const gtsam::Point2& point);
void updatePoint(size_t key, const gtsam::Point2& point);
gtsam::Point2 point(size_t key) const;
Matrix points() const;
};
#include <gtsam/slam/planarSLAM.h>
class Graph {
Graph();
Graph(const gtsam::NonlinearFactorGraph& graph);
Graph(const pose2SLAM::Graph& graph);
Graph(const planarSLAM::Graph& graph);
// FactorGraph
void print(string s) const;
bool equals(const planarSLAM::Graph& fg, double tol) const;
size_t size() const;
bool empty() const;
void remove(size_t i);
size_t nrFactors() const;
gtsam::NonlinearFactor* at(size_t i) const;
// NonlinearFactorGraph
double error(const planarSLAM::Values& values) const;
double probPrime(const planarSLAM::Values& values) const;
gtsam::Ordering* orderingCOLAMD(const planarSLAM::Values& values) const;
gtsam::GaussianFactorGraph* linearize(const planarSLAM::Values& values,
const gtsam::Ordering& ordering) const;
// pose2SLAM-inherited
void addPoseConstraint(size_t key, const gtsam::Pose2& pose);
void addPosePrior(size_t key, const gtsam::Pose2& pose, const gtsam::noiseModel::Base* noiseModel);
void addRelativePose(size_t key1, size_t key2, const gtsam::Pose2& relativePoseMeasurement, const gtsam::noiseModel::Base* noiseModel);
planarSLAM::Values optimize(const planarSLAM::Values& initialEstimate, size_t verbosity) const;
planarSLAM::Values optimizeSPCG(const planarSLAM::Values& initialEstimate, size_t verbosity) const;
gtsam::Marginals marginals(const planarSLAM::Values& solution) const;
// planarSLAM-specific
void addPointConstraint(size_t pointKey, const gtsam::Point2& p);
void addPointPrior(size_t pointKey, const gtsam::Point2& p, const gtsam::noiseModel::Base* model);
void addBearing(size_t poseKey, size_t pointKey, const gtsam::Rot2& bearing, const gtsam::noiseModel::Base* noiseModel);
void addRange(size_t poseKey, size_t pointKey, double range, const gtsam::noiseModel::Base* noiseModel);
void addBearingRange(size_t poseKey, size_t pointKey, const gtsam::Rot2& bearing,double range, const gtsam::noiseModel::Base* noiseModel);
};
#include <gtsam/slam/planarSLAM.h>
class Odometry {
Odometry(size_t key1, size_t key2, const gtsam::Pose2& measured,
const gtsam::noiseModel::Base* model);
void print(string s) const;
gtsam::GaussianFactor* linearize(const planarSLAM::Values& center,
const gtsam::Ordering& ordering) const;
};
}///\namespace planarSLAM
//*************************************************************************
// VisualSLAM
//*************************************************************************
namespace visualSLAM {
#include <gtsam/slam/visualSLAM.h>
class Values {
Values();
Values(const visualSLAM::Values& values);
size_t size() const;
void print(string s) const;
bool exists(size_t key);
gtsam::KeyVector keys() const; // Note the switch to KeyVector, rather than KeyList
// pose3SLAM inherited
static visualSLAM::Values Circle(size_t n, double R);
void insertPose(size_t key, const gtsam::Pose3& pose);
void updatePose(size_t key, const gtsam::Pose3& pose);
gtsam::Pose3 pose(size_t i);
Matrix translations() const;
// Access to poses
visualSLAM::Values allPoses() const;
size_t nrPoses() const;
gtsam::KeyVector poseKeys() const; // Note the switch to KeyVector, rather than KeyList
// Access to points
visualSLAM::Values allPoints() const;
size_t nrPoints() const;
gtsam::KeyVector pointKeys() const; // Note the switch to KeyVector, rather than KeyList
void insertPoint(size_t key, const gtsam::Point3& pose);
void updatePoint(size_t key, const gtsam::Point3& pose);
gtsam::Point3 point(size_t j);
void insertBackprojections(const gtsam::SimpleCamera& c, Vector J, Matrix Z, double depth);
void perturbPoints(double sigma, size_t seed);
Matrix points() const;
};
#include <gtsam/slam/visualSLAM.h>
class Graph {
Graph();
Graph(const gtsam::NonlinearFactorGraph& graph);
Graph(const pose3SLAM::Graph& graph);
Graph(const visualSLAM::Graph& graph);
// FactorGraph
void print(string s) const;
bool equals(const visualSLAM::Graph& fg, double tol) const;
size_t size() const;
bool empty() const;
void remove(size_t i);
size_t nrFactors() const;
gtsam::NonlinearFactor* at(size_t i) const;
double error(const visualSLAM::Values& values) const;
gtsam::Ordering* orderingCOLAMD(const visualSLAM::Values& values) const;
gtsam::GaussianFactorGraph* linearize(const visualSLAM::Values& values,
const gtsam::Ordering& ordering) const;
// pose3SLAM-inherited
void addPoseConstraint(size_t i, const gtsam::Pose3& p);
void addPosePrior(size_t key, const gtsam::Pose3& p, const gtsam::noiseModel::Base* model);
void addRelativePose(size_t key1, size_t key2, const gtsam::Pose3& z, const gtsam::noiseModel::Base* model);
visualSLAM::Values optimize(const visualSLAM::Values& initialEstimate, size_t verbosity) const;
visualSLAM::LevenbergMarquardtOptimizer optimizer(const visualSLAM::Values& initialEstimate, const gtsam::LevenbergMarquardtParams& parameters) const;
gtsam::Marginals marginals(const visualSLAM::Values& solution) const;
// Priors and constraints
void addPointConstraint(size_t pointKey, const gtsam::Point3& p);
void addPointPrior(size_t pointKey, const gtsam::Point3& p, const gtsam::noiseModel::Base* model);
void addRangeFactor(size_t poseKey, size_t pointKey, double range, const gtsam::noiseModel::Base* model);
// Measurements
void addMeasurement(const gtsam::Point2& measured,
const gtsam::noiseModel::Base* model, size_t poseKey, size_t pointKey,
const gtsam::Cal3_S2* K);
void addMeasurements(size_t i, Vector J, Matrix Z,
const gtsam::noiseModel::Base* model, const gtsam::Cal3_S2* K);
void addStereoMeasurement(const gtsam::StereoPoint2& measured,
const gtsam::noiseModel::Base* model, size_t poseKey, size_t pointKey,
const gtsam::Cal3_S2Stereo* K);
// Information
Matrix reprojectionErrors(const visualSLAM::Values& values) const;
};
#include <gtsam/slam/visualSLAM.h>
class ISAM {
ISAM();
ISAM(int reorderInterval);
void print(string s) const;
void printStats() const;
void saveGraph(string s) const;
visualSLAM::Values estimate() const;
Matrix marginalCovariance(size_t key) const;
int reorderInterval() const;
int reorderCounter() const;
void update(const visualSLAM::Graph& newFactors, const visualSLAM::Values& initialValues);
void reorder_relinearize();
void addKey(size_t key);
void setOrdering(const gtsam::Ordering& new_ordering);
// These might be expensive as instead of a reference the wrapper will make a copy
gtsam::GaussianISAM bayesTree() const;
visualSLAM::Values getLinearizationPoint() const;
gtsam::Ordering getOrdering() const;
gtsam::NonlinearFactorGraph getFactorsUnsafe() const;
};
#include <gtsam/slam/visualSLAM.h>
class LevenbergMarquardtOptimizer {
double lambda() const;
void iterate();
double error() const;
size_t iterations() const;
visualSLAM::Values optimize();
visualSLAM::Values optimizeSafely();
visualSLAM::Values values() const;
};
}///\namespace visualSLAM
//************************************************************************
// sparse BA
//************************************************************************
namespace sparseBA {
#include <gtsam/slam/sparseBA.h>
class Values {
Values();
Values(const sparseBA::Values& values);
size_t size() const;
void print(string s) const;
bool exists(size_t key);
gtsam::KeyVector keys() const;
// Access to cameras
sparseBA::Values allSimpleCameras() const ;
size_t nrSimpleCameras() const ;
gtsam::KeyVector simpleCameraKeys() const ;
void insertSimpleCamera(size_t j, const gtsam::SimpleCamera& camera);
void updateSimpleCamera(size_t j, const gtsam::SimpleCamera& camera);
gtsam::SimpleCamera simpleCamera(size_t j) const;
// Access to points, inherited from visualSLAM
sparseBA::Values allPoints() const;
size_t nrPoints() const;
gtsam::KeyVector pointKeys() const; // Note the switch to KeyVector, rather than KeyList
void insertPoint(size_t key, const gtsam::Point3& pose);
void updatePoint(size_t key, const gtsam::Point3& pose);
gtsam::Point3 point(size_t j);
Matrix points() const;
};
#include <gtsam/slam/sparseBA.h>
class Graph {
Graph();
Graph(const gtsam::NonlinearFactorGraph& graph);
Graph(const sparseBA::Graph& graph);
// Information
Matrix reprojectionErrors(const sparseBA::Values& values) const;
// inherited from FactorGraph
void print(string s) const;
bool equals(const sparseBA::Graph& fg, double tol) const;
size_t size() const;
bool empty() const;
void remove(size_t i);
size_t nrFactors() const;
gtsam::NonlinearFactor* at(size_t i) const;
double error(const sparseBA::Values& values) const;
gtsam::Ordering* orderingCOLAMD(const sparseBA::Values& values) const;
gtsam::GaussianFactorGraph* linearize(const sparseBA::Values& values, const gtsam::Ordering& ordering) const;
sparseBA::Values optimize(const sparseBA::Values& initialEstimate, size_t verbosity) const;
sparseBA::LevenbergMarquardtOptimizer optimizer(const sparseBA::Values& initialEstimate, const gtsam::LevenbergMarquardtParams& parameters) const;
gtsam::Marginals marginals(const sparseBA::Values& solution) const;
// inherited from visualSLAM
void addPointConstraint(size_t pointKey, const gtsam::Point3& p);
void addPointPrior(size_t pointKey, const gtsam::Point3& p, const gtsam::noiseModel::Base* model);
// add factors
void addSimpleCameraPrior(size_t cameraKey, const gtsam::SimpleCamera &camera, gtsam::noiseModel::Base* model);
void addSimpleCameraConstraint(size_t cameraKey, const gtsam::SimpleCamera &camera);
void addSimpleCameraMeasurement(const gtsam::Point2 &z, gtsam::noiseModel::Base* model, size_t cameraKey, size_t pointKey);
};
#include <gtsam/slam/sparseBA.h>
class LevenbergMarquardtOptimizer {
double lambda() const;
void iterate();
double error() const;
size_t iterations() const;
sparseBA::Values optimize();
sparseBA::Values optimizeSafely();
sparseBA::Values values() const;
};
}///\namespace sparseBA