gtsam/wrap/Module.cpp

396 lines
15 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Module.ccp
* @author Frank Dellaert
* @author Alex Cunningham
* @author Andrew Melim
**/
#include "Module.h"
#include "FileWriter.h"
#include "utilities.h"
#include "spirit_actors.h"
//#define BOOST_SPIRIT_DEBUG
#include <boost/spirit/include/classic_confix.hpp>
#include <boost/spirit/include/classic_clear_actor.hpp>
#include <boost/foreach.hpp>
#include <boost/filesystem.hpp>
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <algorithm>
using namespace std;
using namespace wrap;
using namespace BOOST_SPIRIT_CLASSIC_NS;
namespace fs = boost::filesystem;
typedef rule<BOOST_SPIRIT_CLASSIC_NS::phrase_scanner_t> Rule;
/* ************************************************************************* */
// We parse an interface file into a Module object.
// The grammar is defined using the boost/spirit combinatorial parser.
// For example, str_p("const") parses the string "const", and the >>
// operator creates a sequence parser. The grammar below, composed of rules
// and with start rule [class_p], doubles as the specs for our interface files.
/* ************************************************************************* */
Module::Module(const string& interfacePath,
const string& moduleName, bool enable_verbose) : name(moduleName), verbose(enable_verbose)
{
// these variables will be imperatively updated to gradually build [cls]
// The one with postfix 0 are used to reset the variables after parse.
ReturnValue retVal0, retVal;
Argument arg0, arg;
ArgumentList args0, args;
vector<string> arg_dup; ///keep track of duplicates
Constructor constructor0(enable_verbose), constructor(enable_verbose);
Deconstructor deconstructor0(enable_verbose), deconstructor(enable_verbose);
Method method0(enable_verbose), method(enable_verbose);
StaticMethod static_method0(enable_verbose), static_method(enable_verbose);
Class cls0(enable_verbose),cls(enable_verbose);
vector<string> namespaces, /// current namespace tag
namespace_includes, /// current set of includes
namespaces_return, /// namespace for current return type
using_namespace_current; /// All namespaces from "using" declarations
string include_path = "";
string class_name = "";
const string null_str = "";
//----------------------------------------------------------------------------
// Grammar with actions that build the Class object. Actions are
// defined within the square brackets [] and are executed whenever a
// rule is successfully parsed. Define BOOST_SPIRIT_DEBUG to debug.
// The grammar is allows a very restricted C++ header
// lexeme_d turns off white space skipping
// http://www.boost.org/doc/libs/1_37_0/libs/spirit/classic/doc/directives.html
// ----------------------------------------------------------------------------
Rule comments_p = comment_p("/*", "*/") | comment_p("//", eol_p);
Rule basisType_p =
(str_p("string") | "bool" | "size_t" | "int" | "double" | "char" | "unsigned char");
Rule keywords_p =
(str_p("const") | "static" | "namespace" | basisType_p);
Rule eigenType_p =
(str_p("Vector") | "Matrix");
Rule className_p = (lexeme_d[upper_p >> *(alnum_p | '_')] - eigenType_p - keywords_p)[assign_a(class_name)];
Rule namespace_name_p = lexeme_d[lower_p >> *(alnum_p | '_')] - keywords_p;
Rule namespace_arg_p = namespace_name_p[push_back_a(arg.namespaces)] >> str_p("::");
Rule argEigenType_p =
eigenType_p[assign_a(arg.type)] >>
!ch_p('*')[assign_a(arg.is_ptr,true)];
Rule eigenRef_p =
!str_p("const") [assign_a(arg.is_const,true)] >>
eigenType_p [assign_a(arg.type)] >>
ch_p('&') [assign_a(arg.is_ref,true)];
Rule classArg_p =
!str_p("const") [assign_a(arg.is_const,true)] >>
*namespace_arg_p >>
className_p[assign_a(arg.type)] >>
(ch_p('*')[assign_a(arg.is_ptr,true)] | ch_p('&')[assign_a(arg.is_ref,true)]);
Rule name_p = lexeme_d[alpha_p >> *(alnum_p | '_')];
Rule argument_p =
((basisType_p[assign_a(arg.type)] | argEigenType_p | eigenRef_p | classArg_p)
>> name_p[assign_a(arg.name)])
[push_back_a(args, arg)]
[assign_a(arg,arg0)];
Rule argumentList_p = !argument_p >> * (',' >> argument_p);
Rule constructor_p =
(className_p >> '(' >> argumentList_p >> ')' >> ';' >> !comments_p)
[push_back_a(constructor.args_list, args)]
[assign_a(args,args0)];
//[assign_a(constructor.args,args)]
//[assign_a(constructor.name,cls.name)]
//[push_back_a(cls.constructors, constructor)]
//[assign_a(constructor,constructor0)];
Rule namespace_ret_p = namespace_name_p[push_back_a(namespaces_return)] >> str_p("::");
Rule returnType1_p =
(basisType_p[assign_a(retVal.type1)][assign_a(retVal.category1, ReturnValue::BASIS)]) |
((*namespace_ret_p)[assign_a(retVal.namespaces1, namespaces_return)][clear_a(namespaces_return)]
>> (className_p[assign_a(retVal.type1)][assign_a(retVal.category1, ReturnValue::CLASS)]) >>
!ch_p('*')[assign_a(retVal.isPtr1,true)]) |
(eigenType_p[assign_a(retVal.type1)][assign_a(retVal.category1, ReturnValue::EIGEN)]);
Rule returnType2_p =
(basisType_p[assign_a(retVal.type2)][assign_a(retVal.category2, ReturnValue::BASIS)]) |
((*namespace_ret_p)[assign_a(retVal.namespaces2, namespaces_return)][clear_a(namespaces_return)]
>> (className_p[assign_a(retVal.type2)][assign_a(retVal.category2, ReturnValue::CLASS)]) >>
!ch_p('*') [assign_a(retVal.isPtr2,true)]) |
(eigenType_p[assign_a(retVal.type2)][assign_a(retVal.category2, ReturnValue::EIGEN)]);
Rule pair_p =
(str_p("pair") >> '<' >> returnType1_p >> ',' >> returnType2_p >> '>')
[assign_a(retVal.isPair,true)];
Rule void_p = str_p("void")[assign_a(retVal.type1)];
Rule returnType_p = void_p | returnType1_p | pair_p;
Rule methodName_p = lexeme_d[lower_p >> *(alnum_p | '_')];
Rule method_p =
(returnType_p >> methodName_p[assign_a(method.name)] >>
'(' >> argumentList_p >> ')' >>
!str_p("const")[assign_a(method.is_const_,true)] >> ';' >> *comments_p)
[assign_a(method.args,args)]
[assign_a(args,args0)]
[assign_a(method.returnVal,retVal)]
[assign_a(retVal,retVal0)]
[push_back_a(cls.methods, method)]
[assign_a(method,method0)];
Rule staticMethodName_p = lexeme_d[(upper_p | lower_p) >> *(alnum_p | '_')];
Rule static_method_p =
(str_p("static") >> returnType_p >> staticMethodName_p[assign_a(static_method.name)] >>
'(' >> argumentList_p >> ')' >> ';' >> *comments_p)
[assign_a(static_method.args,args)]
[assign_a(args,args0)]
[assign_a(static_method.returnVal,retVal)]
[assign_a(retVal,retVal0)]
[push_back_a(cls.static_methods, static_method)]
[assign_a(static_method,static_method0)];
Rule functions_p = constructor_p | method_p | static_method_p;
Rule include_p = str_p("#include") >> ch_p('<') >> (*(anychar_p - '>'))[assign_a(include_path)] >> ch_p('>');
Rule class_p =
(!*include_p
>> str_p("class")[push_back_a(cls.includes, include_path)][assign_a(include_path, null_str)]
>> className_p[assign_a(cls.name)]
>> '{'
>> *(functions_p | comments_p)
>> str_p("};"))
[assign_a(constructor.name, cls.name)]
[assign_a(cls.constructor, constructor)]
[assign_a(cls.namespaces, namespaces)]
[assign_a(cls.using_namespaces, using_namespace_current)]
[append_a(cls.includes, namespace_includes)]
[assign_a(deconstructor.name,cls.name)]
[assign_a(cls.deconstructor, deconstructor)]
[push_back_a(classes,cls)]
[assign_a(deconstructor,deconstructor0)]
[assign_a(constructor, constructor0)]
[assign_a(cls,cls0)];
Rule namespace_def_p =
(!*include_p
>> str_p("namespace")[push_back_a(namespace_includes, include_path)][assign_a(include_path, null_str)]
>> namespace_name_p[push_back_a(namespaces)]
>> ch_p('{')
>> *(class_p | namespace_def_p | comments_p)
>> str_p("}///\\namespace") // end namespace, avoid confusion with classes
>> !namespace_name_p)
[pop_a(namespaces)]
[pop_a(namespace_includes)];
Rule using_namespace_p =
str_p("using") >> str_p("namespace")
>> namespace_name_p[push_back_a(using_namespace_current)] >> ch_p(';');
Rule forward_declaration_p =
str_p("class") >>
(*(namespace_name_p >> str_p("::")) >> className_p)[push_back_a(forward_declarations)]
>> ch_p(';');
Rule module_content_p = comments_p | using_namespace_p | class_p | forward_declaration_p | namespace_def_p ;
Rule module_p = *module_content_p >> !end_p;
//----------------------------------------------------------------------------
// for debugging, define BOOST_SPIRIT_DEBUG
# ifdef BOOST_SPIRIT_DEBUG
BOOST_SPIRIT_DEBUG_NODE(className_p);
BOOST_SPIRIT_DEBUG_NODE(classPtr_p);
BOOST_SPIRIT_DEBUG_NODE(classRef_p);
BOOST_SPIRIT_DEBUG_NODE(basisType_p);
BOOST_SPIRIT_DEBUG_NODE(name_p);
BOOST_SPIRIT_DEBUG_NODE(argument_p);
BOOST_SPIRIT_DEBUG_NODE(argumentList_p);
BOOST_SPIRIT_DEBUG_NODE(constructor_p);
BOOST_SPIRIT_DEBUG_NODE(returnType1_p);
BOOST_SPIRIT_DEBUG_NODE(returnType2_p);
BOOST_SPIRIT_DEBUG_NODE(pair_p);
BOOST_SPIRIT_DEBUG_NODE(void_p);
BOOST_SPIRIT_DEBUG_NODE(returnType_p);
BOOST_SPIRIT_DEBUG_NODE(methodName_p);
BOOST_SPIRIT_DEBUG_NODE(method_p);
BOOST_SPIRIT_DEBUG_NODE(class_p);
BOOST_SPIRIT_DEBUG_NODE(namespace_def_p);
BOOST_SPIRIT_DEBUG_NODE(module_p);
# endif
//----------------------------------------------------------------------------
// read interface file
string interfaceFile = interfacePath + "/" + moduleName + ".h";
string contents = file_contents(interfaceFile);
// and parse contents
parse_info<const char*> info = parse(contents.c_str(), module_p, space_p);
if(!info.full) {
printf("parsing stopped at \n%.20s\n",info.stop);
throw ParseFailed(info.length);
}
}
/* ************************************************************************* */
template<class T>
void verifyArguments(const vector<string>& validArgs, const vector<T>& vt) {
BOOST_FOREACH(const T& t, vt) {
BOOST_FOREACH(Argument arg, t.args) {
string fullType = arg.qualifiedType("::");
if(find(validArgs.begin(), validArgs.end(), fullType)
== validArgs.end())
throw DependencyMissing(fullType, t.name);
}
}
}
/* ************************************************************************* */
template<class T>
void verifyReturnTypes(const vector<string>& validtypes, const vector<T>& vt) {
BOOST_FOREACH(const T& t, vt) {
const ReturnValue& retval = t.returnVal;
if (find(validtypes.begin(), validtypes.end(), retval.qualifiedType1("::")) == validtypes.end())
throw DependencyMissing(retval.qualifiedType1("::"), t.name);
if (retval.isPair && find(validtypes.begin(), validtypes.end(), retval.qualifiedType2("::")) == validtypes.end())
throw DependencyMissing(retval.qualifiedType2("::"), t.name);
}
}
/* ************************************************************************* */
void Module::matlab_code(const string& toolboxPath, const string& headerPath) const {
fs::create_directories(toolboxPath);
// create the unified .cpp switch file
const string wrapperName = name + "_wrapper";
string wrapperFileName = toolboxPath + "/" + wrapperName + ".cpp";
FileWriter wrapperFile(wrapperFileName, verbose, "//");
vector<string> functionNames; // Function names stored by index for switch
wrapperFile.oss << "#include <wrap/matlab.h>\n";
wrapperFile.oss << "#include <map>\n";
wrapperFile.oss << "#include <boost/foreach.hpp>\n";
wrapperFile.oss << "\n";
// Dependency check list
vector<string> validTypes = forward_declarations;
validTypes.push_back("void");
validTypes.push_back("string");
validTypes.push_back("int");
validTypes.push_back("bool");
validTypes.push_back("char");
validTypes.push_back("unsigned char");
validTypes.push_back("size_t");
validTypes.push_back("double");
validTypes.push_back("Vector");
validTypes.push_back("Matrix");
//Create a list of parsed classes for dependency checking
BOOST_FOREACH(Class cls, classes) {
validTypes.push_back(cls.qualifiedName("::"));
}
// Generate all includes
BOOST_FOREACH(Class cls, classes) {
generateIncludes(wrapperFile, cls.name, cls.includes);
}
wrapperFile.oss << "\n";
// Generate all collectors
BOOST_FOREACH(Class cls, classes) {
const string matlabName = cls.qualifiedName(), cppName = cls.qualifiedName("::");
wrapperFile.oss << "typedef std::set<boost::shared_ptr<" << cppName << ">*> "
<< "Collector_" << matlabName << ";\n";
wrapperFile.oss << "static Collector_" << matlabName <<
" collector_" << matlabName << ";\n";
}
// generate mexAtExit cleanup function
wrapperFile.oss << "void _deleteAllObjects()\n";
wrapperFile.oss << "{\n";
BOOST_FOREACH(Class cls, classes) {
const string matlabName = cls.qualifiedName();
const string cppName = cls.qualifiedName("::");
const string collectorType = "Collector_" + matlabName;
const string collectorName = "collector_" + matlabName;
wrapperFile.oss << " for(" << collectorType << "::iterator iter = " << collectorName << ".begin();\n";
wrapperFile.oss << " iter != " << collectorName << ".end(); ) {\n";
wrapperFile.oss << " delete *iter;\n";
wrapperFile.oss << " " << collectorName << ".erase(iter++);\n";
wrapperFile.oss << " }\n";
}
wrapperFile.oss << "}\n";
// generate proxy classes and wrappers
BOOST_FOREACH(Class cls, classes) {
// create proxy class
string classFile = toolboxPath + "/" + cls.qualifiedName() + ".m";
cls.matlab_proxy(classFile, wrapperName, wrapperFile, functionNames);
// verify all of the function arguments
//TODO:verifyArguments<ArgumentList>(validTypes, cls.constructor.args_list);
verifyArguments<StaticMethod>(validTypes, cls.static_methods);
verifyArguments<Method>(validTypes, cls.methods);
// verify function return types
verifyReturnTypes<StaticMethod>(validTypes, cls.static_methods);
verifyReturnTypes<Method>(validTypes, cls.methods);
// create constructor and method wrappers
cls.matlab_static_methods(toolboxPath, wrapperName, wrapperFile, functionNames);
}
// finish wrapper file
finish_wrapper(wrapperFile, functionNames);
wrapperFile.emit(true);
}
/* ************************************************************************* */
void Module::finish_wrapper(FileWriter& file, const std::vector<std::string>& functionNames) const {
file.oss << "void mexFunction(int nargout, mxArray *out[], int nargin, const mxArray *in[])\n";
file.oss << "{\n";
file.oss << " mstream mout;\n"; // Send stdout to MATLAB console, see matlab.h
file.oss << " std::streambuf *outbuf = std::cout.rdbuf(&mout);\n\n";
file.oss << " int id = unwrap<int>(in[0]);\n\n";
file.oss << " switch(id) {\n";
for(size_t id = 0; id < functionNames.size(); ++id) {
file.oss << " case " << id << ":\n";
file.oss << " " << functionNames[id] << "(nargout, out, nargin-1, in+1);\n";
file.oss << " break;\n";
}
file.oss << " }\n";
file.oss << "\n";
file.oss << " std::cout.rdbuf(outbuf);\n"; // Restore cout, see matlab.h
file.oss << "}\n";
}
/* ************************************************************************* */