887 lines
26 KiB
C++
887 lines
26 KiB
C++
/*
|
|
* @file testSQP.cpp
|
|
* @brief demos of SQP using existing gtsam components
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <cmath>
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
#include <boost/assign/std/map.hpp> // for insert
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/shared_ptr.hpp>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
// TODO: DANGEROUS, create shared pointers
|
|
#define GTSAM_MAGIC_GAUSSIAN 2
|
|
#define GTSAM_MAGIC_KEY
|
|
|
|
#include <Pose3.h>
|
|
#include <GaussianFactorGraph.h>
|
|
#include <NonlinearOptimizer.h>
|
|
#include <SQPOptimizer.h>
|
|
#include <simulated2D.h>
|
|
#include <Ordering.h>
|
|
#include <visualSLAM.h>
|
|
|
|
// templated implementations
|
|
#include <NonlinearFactorGraph-inl.h>
|
|
#include <NonlinearConstraint-inl.h>
|
|
#include <NonlinearOptimizer-inl.h>
|
|
#include <SQPOptimizer-inl.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace boost;
|
|
using namespace boost::assign;
|
|
|
|
// trick from some reading group
|
|
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
|
|
|
|
/* *********************************************************************
|
|
* This example uses a nonlinear objective function and
|
|
* nonlinear equality constraint. The formulation is actually
|
|
* the Cholesky form that creates the full Hessian explicitly,
|
|
* which should really be avoided with our QR-based machinery.
|
|
*
|
|
* Note: the update equation used here has a fixed step size
|
|
* and gain that is rather arbitrarily chosen, and as such,
|
|
* will take a silly number of iterations.
|
|
*/
|
|
TEST (SQP, problem1_cholesky ) {
|
|
bool verbose = false;
|
|
// use a nonlinear function of f(x) = x^2+y^2
|
|
// nonlinear equality constraint: g(x) = x^2-5-y=0
|
|
// Lagrangian: f(x) + \lambda*g(x)
|
|
|
|
// state structure: [x y \lambda]
|
|
VectorConfig init, state;
|
|
init.insert("x", Vector_(1, 1.0));
|
|
init.insert("y", Vector_(1, 1.0));
|
|
init.insert("L", Vector_(1, 1.0));
|
|
state = init;
|
|
|
|
if (verbose) init.print("Initial State");
|
|
|
|
// loop until convergence
|
|
int maxIt = 10;
|
|
for (int i = 0; i<maxIt; ++i) {
|
|
if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
|
|
|
|
// extract the states
|
|
double x, y, lambda;
|
|
x = state["x"](0);
|
|
y = state["y"](0);
|
|
lambda = state["L"](0);
|
|
|
|
// calculate the components
|
|
Matrix H1, H2, gradG;
|
|
Vector gradL, gx;
|
|
|
|
// hessian of lagrangian function, in two columns:
|
|
H1 = Matrix_(2,1,
|
|
2.0+2.0*lambda,
|
|
0.0);
|
|
H2 = Matrix_(2,1,
|
|
0.0,
|
|
2.0);
|
|
|
|
// deriviative of lagrangian function
|
|
gradL = Vector_(2,
|
|
2.0*x*(1+lambda),
|
|
2.0*y-lambda);
|
|
|
|
// constraint derivatives
|
|
gradG = Matrix_(2,1,
|
|
2.0*x,
|
|
0.0);
|
|
|
|
// constraint value
|
|
gx = Vector_(1,
|
|
x*x-5-y);
|
|
|
|
// create a factor for the states
|
|
GaussianFactor::shared_ptr f1(new
|
|
GaussianFactor("x", H1, "y", H2, "L", gradG, gradL, 1.0));
|
|
|
|
// create a factor for the lagrange multiplier
|
|
GaussianFactor::shared_ptr f2(new
|
|
GaussianFactor("x", -sub(gradG, 0, 1, 0, 1),
|
|
"y", -sub(gradG, 1, 2, 0, 1), -gx, 0.0));
|
|
|
|
// construct graph
|
|
GaussianFactorGraph fg;
|
|
fg.push_back(f1);
|
|
fg.push_back(f2);
|
|
if (verbose) fg.print("Graph");
|
|
|
|
// solve
|
|
Ordering ord;
|
|
ord += "x", "y", "L";
|
|
VectorConfig delta = fg.optimize(ord).scale(-1.0);
|
|
if (verbose) delta.print("Delta");
|
|
|
|
// update initial estimate
|
|
VectorConfig newState = expmap(state, delta);
|
|
state = newState;
|
|
|
|
if (verbose) state.print("Updated State");
|
|
}
|
|
|
|
// verify that it converges to the nearest optimal point
|
|
VectorConfig expected;
|
|
expected.insert("L", Vector_(1, -1.0));
|
|
expected.insert("x", Vector_(1, 2.12));
|
|
expected.insert("y", Vector_(1, -0.5));
|
|
CHECK(assert_equal(expected,state, 1e-2));
|
|
}
|
|
|
|
/* *********************************************************************
|
|
* This example uses a nonlinear objective function and
|
|
* nonlinear equality constraint. This formulation splits
|
|
* the constraint into a factor and a linear constraint.
|
|
*
|
|
* This example uses the same silly number of iterations as the
|
|
* previous example.
|
|
*/
|
|
TEST (SQP, problem1_sqp ) {
|
|
bool verbose = false;
|
|
// use a nonlinear function of f(x) = x^2+y^2
|
|
// nonlinear equality constraint: g(x) = x^2-5-y=0
|
|
// Lagrangian: f(x) + \lambda*g(x)
|
|
|
|
// state structure: [x y \lambda]
|
|
VectorConfig init, state;
|
|
init.insert("x", Vector_(1, 1.0));
|
|
init.insert("y", Vector_(1, 1.0));
|
|
init.insert("L", Vector_(1, 1.0));
|
|
state = init;
|
|
|
|
if (verbose) init.print("Initial State");
|
|
|
|
// loop until convergence
|
|
int maxIt = 5;
|
|
for (int i = 0; i<maxIt; ++i) {
|
|
if (verbose) cout << "\n******************************\nIteration: " << i+1 << endl;
|
|
|
|
// extract the states
|
|
double x, y, lambda;
|
|
x = state["x"](0);
|
|
y = state["y"](0);
|
|
lambda = state["L"](0);
|
|
|
|
/** create the linear factor
|
|
* ||h(x)-z||^2 => ||Ax-b||^2
|
|
* where:
|
|
* h(x) simply returns the inputs
|
|
* z zeros(2)
|
|
* A identity
|
|
* b linearization point
|
|
*/
|
|
Matrix A = eye(2);
|
|
Vector b = Vector_(2, x, y);
|
|
GaussianFactor::shared_ptr f1(
|
|
new GaussianFactor("x", sub(A, 0,2, 0,1), // A(:,1)
|
|
"y", sub(A, 0,2, 1,2), // A(:,2)
|
|
b, // rhs of f(x)
|
|
1.0)); // arbitrary sigma
|
|
|
|
/** create the constraint-linear factor
|
|
* Provides a mechanism to use variable gain to force the constraint
|
|
* \lambda*gradG*dx + d\lambda = zero
|
|
* formulated in matrix form as:
|
|
* [\lambda*gradG eye(1)] [dx; d\lambda] = zero
|
|
*/
|
|
Matrix gradG = Matrix_(1, 2,2*x, -1.0);
|
|
GaussianFactor::shared_ptr f2(
|
|
new GaussianFactor("x", lambda*sub(gradG, 0,1, 0,1), // scaled gradG(:,1)
|
|
"y", lambda*sub(gradG, 0,1, 1,2), // scaled gradG(:,2)
|
|
"L", eye(1), // dlambda term
|
|
Vector_(1, 0.0), // rhs is zero
|
|
1.0)); // arbitrary sigma
|
|
|
|
// create the actual constraint
|
|
// [gradG] [x; y] - g = 0
|
|
Vector g = Vector_(1,x*x-y-5);
|
|
GaussianFactor::shared_ptr c1(
|
|
new GaussianFactor("x", sub(gradG, 0,1, 0,1), // slice first part of gradG
|
|
"y", sub(gradG, 0,1, 1,2), // slice second part of gradG
|
|
g, // value of constraint function
|
|
0.0)); // force to constraint
|
|
|
|
// construct graph
|
|
GaussianFactorGraph fg;
|
|
fg.push_back(f1);
|
|
fg.push_back(f2);
|
|
fg.push_back(c1);
|
|
if (verbose) fg.print("Graph");
|
|
|
|
// solve
|
|
Ordering ord;
|
|
ord += "x", "y", "L";
|
|
VectorConfig delta = fg.optimize(ord);
|
|
if (verbose) delta.print("Delta");
|
|
|
|
// update initial estimate
|
|
VectorConfig newState = expmap(state, delta.scale(-1.0));
|
|
|
|
// set the state to the updated state
|
|
state = newState;
|
|
|
|
if (verbose) state.print("Updated State");
|
|
}
|
|
|
|
// verify that it converges to the nearest optimal point
|
|
VectorConfig expected;
|
|
expected.insert("x", Vector_(1, 2.12));
|
|
expected.insert("y", Vector_(1, -0.5));
|
|
CHECK(assert_equal(state["x"], expected["x"], 1e-2));
|
|
CHECK(assert_equal(state["y"], expected["y"], 1e-2));
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
|
|
typedef simulated2D::Config Config2D;
|
|
typedef NonlinearFactorGraph<Config2D> NLGraph;
|
|
typedef NonlinearEquality<Config2D, simulated2D::PoseKey, Point2> NLE;
|
|
typedef boost::shared_ptr<simulated2D::Measurement > shared;
|
|
typedef NonlinearOptimizer<NLGraph, Config2D> Optimizer;
|
|
|
|
typedef TypedSymbol<Vector, 'L'> LamKey;
|
|
|
|
/*
|
|
* Determining a ground truth linear system
|
|
* with two poses seeing one landmark, with each pose
|
|
* constrained to a particular value
|
|
*/
|
|
TEST (SQP, two_pose_truth ) {
|
|
bool verbose = false;
|
|
|
|
// create a graph
|
|
shared_ptr<NLGraph> graph(new NLGraph);
|
|
|
|
// add the constraints on the ends
|
|
// position (1, 1) constraint for x1
|
|
// position (5, 6) constraint for x2
|
|
simulated2D::PoseKey x1(1), x2(2);
|
|
simulated2D::PointKey l1(1);
|
|
Point2 pt_x1(1.0, 1.0),
|
|
pt_x2(5.0, 6.0);
|
|
shared_ptr<NLE> ef1(new NLE(x1, pt_x1)),
|
|
ef2(new NLE(x2, pt_x2));
|
|
graph->push_back(ef1);
|
|
graph->push_back(ef2);
|
|
|
|
// measurement from x1 to l1
|
|
Point2 z1(0.0, 5.0);
|
|
sharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1));
|
|
shared f1(new simulated2D::Measurement(z1, sigma, x1,l1));
|
|
graph->push_back(f1);
|
|
|
|
// measurement from x2 to l1
|
|
Point2 z2(-4.0, 0.0);
|
|
shared f2(new simulated2D::Measurement(z2, sigma, x2,l1));
|
|
graph->push_back(f2);
|
|
|
|
// create an initial estimate
|
|
Point2 pt_l1(
|
|
1.0, 6.0 // ground truth
|
|
//1.2, 5.6 // small error
|
|
);
|
|
shared_ptr<Config2D> initialEstimate(new Config2D);
|
|
initialEstimate->insert(l1, pt_l1);
|
|
initialEstimate->insert(x1, pt_x1);
|
|
initialEstimate->insert(x2, pt_x2);
|
|
|
|
// optimize the graph
|
|
shared_ptr<Ordering> ordering(new Ordering());
|
|
*ordering += "x1", "x2", "l1";
|
|
Optimizer optimizer(graph, ordering, initialEstimate);
|
|
|
|
// display solution
|
|
double relativeThreshold = 1e-5;
|
|
double absoluteThreshold = 1e-5;
|
|
Optimizer act_opt = optimizer.gaussNewton(relativeThreshold, absoluteThreshold);
|
|
boost::shared_ptr<const Config2D> actual = act_opt.config();
|
|
if (verbose) actual->print("Configuration after optimization");
|
|
|
|
// verify
|
|
Config2D expected;
|
|
expected.insert(x1, pt_x1);
|
|
expected.insert(x2, pt_x2);
|
|
expected.insert(l1, Point2(1.0, 6.0));
|
|
CHECK(assert_equal(expected, *actual, 1e-5));
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
namespace sqp_test1 {
|
|
|
|
// binary constraint between landmarks
|
|
/** g(x) = x-y = 0 */
|
|
Vector g(const Config2D& config, const list<Symbol>& keys) {
|
|
Point2 pt1, pt2;
|
|
pt1 = config[simulated2D::PointKey(keys.front().index())];
|
|
pt2 = config[simulated2D::PointKey(keys.back().index())];
|
|
return Vector_(2, pt1.x() - pt2.x(), pt1.y() - pt2.y());
|
|
}
|
|
|
|
/** jacobian at l1 */
|
|
Matrix G1(const Config2D& config, const list<Symbol>& keys) {
|
|
return eye(2);
|
|
}
|
|
|
|
/** jacobian at l2 */
|
|
Matrix G2(const Config2D& config, const list<Symbol>& keys) {
|
|
return -1 * eye(2);
|
|
}
|
|
|
|
} // \namespace sqp_test1
|
|
|
|
//namespace sqp_test2 {
|
|
//
|
|
// // Unary Constraint on x1
|
|
// /** g(x) = x -[1;1] = 0 */
|
|
// Vector g(const Config2D& config, const list<Symbol>& keys) {
|
|
// return config[keys.front()] - Vector_(2, 1.0, 1.0);
|
|
// }
|
|
//
|
|
// /** jacobian at x1 */
|
|
// Matrix G(const Config2D& config, const list<Symbol>& keys) {
|
|
// return eye(2);
|
|
// }
|
|
//
|
|
//} // \namespace sqp_test2
|
|
|
|
|
|
typedef NonlinearConstraint2<
|
|
Config2D, simulated2D::PointKey, Point2, simulated2D::PointKey, Point2> NLC2;
|
|
|
|
/* *********************************************************************
|
|
* Version that actually uses nonlinear equality constraints
|
|
* to to perform optimization. Same as above, but no
|
|
* equality constraint on x2, and two landmarks that
|
|
* should be the same. Note that this is a linear system,
|
|
* so it will converge in one step.
|
|
*/
|
|
TEST (SQP, two_pose ) {
|
|
bool verbose = false;
|
|
|
|
// create the graph
|
|
shared_ptr<NLGraph> graph(new NLGraph);
|
|
|
|
// add the constraints on the ends
|
|
// position (1, 1) constraint for x1
|
|
// position (5, 6) constraint for x2
|
|
simulated2D::PoseKey x1(1), x2(2);
|
|
simulated2D::PointKey l1(1), l2(2);
|
|
Point2 pt_x1(1.0, 1.0),
|
|
pt_x2(5.0, 6.0);
|
|
shared_ptr<NLE> ef1(new NLE(x1, pt_x1));
|
|
graph->push_back(ef1);
|
|
|
|
// measurement from x1 to l1
|
|
Point2 z1(0.0, 5.0);
|
|
sharedGaussian sigma(noiseModel::Isotropic::Sigma(2, 0.1));
|
|
shared f1(new simulated2D::Measurement(z1, sigma, x1,l1));
|
|
graph->push_back(f1);
|
|
|
|
// measurement from x2 to l2
|
|
Point2 z2(-4.0, 0.0);
|
|
shared f2(new simulated2D::Measurement(z2, sigma, x2,l2));
|
|
graph->push_back(f2);
|
|
|
|
// equality constraint between l1 and l2
|
|
list<Symbol> keys2; keys2 += "l1", "l2";
|
|
boost::shared_ptr<NLC2 > c2(new NLC2(
|
|
boost::bind(sqp_test1::g, _1, keys2),
|
|
l1, boost::bind(sqp_test1::G1, _1, keys2),
|
|
l2, boost::bind(sqp_test1::G2, _1, keys2),
|
|
2, "L1"));
|
|
graph->push_back(c2);
|
|
|
|
// create an initial estimate
|
|
shared_ptr<Config2D> initialEstimate(new Config2D);
|
|
initialEstimate->insert(x1, pt_x1);
|
|
initialEstimate->insert(x2, Point2());
|
|
initialEstimate->insert(l1, Point2(1.0, 6.0)); // ground truth
|
|
initialEstimate->insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
|
|
|
|
// create an initial estimate for the lagrange multiplier
|
|
shared_ptr<VectorConfig> initLagrange(new VectorConfig);
|
|
initLagrange->insert(LamKey(1), Vector_(2, 1.0, 1.0)); // connect the landmarks
|
|
|
|
// create state config variables and initialize them
|
|
Config2D state(*initialEstimate);
|
|
VectorConfig state_lambda(*initLagrange);
|
|
|
|
// optimization loop
|
|
int maxIt = 1;
|
|
for (int i = 0; i<maxIt; ++i) {
|
|
|
|
// linearize the graph
|
|
GaussianFactorGraph fg;
|
|
typedef FactorGraph<NonlinearFactor<Config2D> >::const_iterator const_iterator;
|
|
// iterate over all factors
|
|
for (const_iterator factor = graph->begin(); factor < graph->end(); factor++) {
|
|
const shared_ptr<NLC2> constraint = boost::shared_dynamic_cast<NLC2>(*factor);
|
|
if (constraint == NULL) {
|
|
// if a regular factor, linearize using the default linearization
|
|
GaussianFactor::shared_ptr f = (*factor)->linearize(state);
|
|
fg.push_back(f);
|
|
} else {
|
|
// if a constraint, linearize using the constraint method (2 configs)
|
|
GaussianFactor::shared_ptr f, c;
|
|
boost::tie(f,c) = constraint->linearize(state, state_lambda);
|
|
fg.push_back(f);
|
|
fg.push_back(c);
|
|
}
|
|
}
|
|
|
|
if (verbose) fg.print("Linearized graph");
|
|
|
|
// create an ordering
|
|
Ordering ordering;
|
|
ordering += "x1", "x2", "l1", "l2", "L1";
|
|
|
|
// optimize linear graph to get full delta config
|
|
VectorConfig delta = fg.optimize(ordering);
|
|
if (verbose) delta.print("Delta Config");
|
|
|
|
// update both state variables
|
|
state = expmap(state, delta);
|
|
if (verbose) state.print("newState");
|
|
state_lambda = expmap(state_lambda, delta);
|
|
if (verbose) state_lambda.print("newStateLam");
|
|
}
|
|
|
|
// verify
|
|
Config2D expected;
|
|
expected.insert(x1, pt_x1);
|
|
expected.insert(l1, Point2(1.0, 6.0));
|
|
expected.insert(l2, Point2(1.0, 6.0));
|
|
expected.insert(x2, Point2(5.0, 6.0));
|
|
CHECK(assert_equal(expected, state, 1e-5));
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
// VSLAM Examples
|
|
/* ********************************************************************* */
|
|
// make a realistic calibration matrix
|
|
double fov = 60; // degrees
|
|
size_t w=640,h=480;
|
|
Cal3_S2 K(fov,w,h);
|
|
boost::shared_ptr<Cal3_S2> shK(new Cal3_S2(K));
|
|
|
|
using namespace gtsam::visualSLAM;
|
|
using namespace boost;
|
|
|
|
// typedefs for visual SLAM example
|
|
typedef visualSLAM::Config VConfig;
|
|
typedef visualSLAM::Graph VGraph;
|
|
typedef boost::shared_ptr<ProjectionFactor> shared_vf;
|
|
typedef NonlinearOptimizer<VGraph,VConfig> VOptimizer;
|
|
typedef SQPOptimizer<VGraph, VConfig> VSOptimizer;
|
|
typedef NonlinearConstraint2<
|
|
VConfig, visualSLAM::PointKey, Pose3, visualSLAM::PointKey, Pose3> VNLC2;
|
|
|
|
|
|
/**
|
|
* Ground truth for a visual SLAM example with stereo vision
|
|
*/
|
|
TEST (SQP, stereo_truth ) {
|
|
bool verbose = false;
|
|
|
|
// create initial estimates
|
|
Rot3 faceDownY(Matrix_(3,3,
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
SimpleCamera camera1(K, pose1);
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
SimpleCamera camera2(K, pose2);
|
|
Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
Point3 landmarkNoisy(1.0, 6.0, 0.0);
|
|
|
|
// create truth config
|
|
boost::shared_ptr<VConfig> truthConfig(new Config);
|
|
truthConfig->insert(1, camera1.pose());
|
|
truthConfig->insert(2, camera2.pose());
|
|
truthConfig->insert(1, landmark);
|
|
|
|
// create graph
|
|
shared_ptr<VGraph> graph(new VGraph());
|
|
|
|
// create equality constraints for poses
|
|
graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(1, camera1.pose())));
|
|
graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(2, camera2.pose())));
|
|
|
|
// create VSLAM factors
|
|
Point2 z1 = camera1.project(landmark);
|
|
if (verbose) z1.print("z1");
|
|
shared_vf vf1(new ProjectionFactor(z1, 1.0, 1, 1, shK));
|
|
graph->push_back(vf1);
|
|
Point2 z2 = camera2.project(landmark);
|
|
if (verbose) z2.print("z2");
|
|
shared_vf vf2(new ProjectionFactor(z2, 1.0, 2, 1, shK));
|
|
graph->push_back(vf2);
|
|
|
|
if (verbose) graph->print("Graph after construction");
|
|
|
|
// create ordering
|
|
shared_ptr<Ordering> ord(new Ordering());
|
|
*ord += "x1", "x2", "l1";
|
|
|
|
// create optimizer
|
|
VOptimizer optimizer(graph, ord, truthConfig);
|
|
|
|
// optimize
|
|
VOptimizer afterOneIteration = optimizer.iterate();
|
|
|
|
// verify
|
|
DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);
|
|
|
|
// check if correct
|
|
if (verbose) afterOneIteration.config()->print("After iteration");
|
|
CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
|
|
}
|
|
|
|
|
|
/* *********************************************************************
|
|
* Ground truth for a visual SLAM example with stereo vision
|
|
* with some noise injected into the initial config
|
|
*/
|
|
TEST (SQP, stereo_truth_noisy ) {
|
|
bool verbose = false;
|
|
|
|
// setting to determine how far away the noisy landmark is,
|
|
// given that the ground truth is 5m in front of the cameras
|
|
double noisyDist = 7.6;
|
|
|
|
// create initial estimates
|
|
Rot3 faceDownY(Matrix_(3,3,
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
SimpleCamera camera1(K, pose1);
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
SimpleCamera camera2(K, pose2);
|
|
Point3 landmark(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
Point3 landmarkNoisy(1.0, noisyDist, 0.0); // initial point is too far out
|
|
|
|
// create truth config
|
|
boost::shared_ptr<Config> truthConfig(new Config);
|
|
truthConfig->insert(1, camera1.pose());
|
|
truthConfig->insert(2, camera2.pose());
|
|
truthConfig->insert(1, landmark);
|
|
|
|
// create config
|
|
boost::shared_ptr<Config> noisyConfig(new Config);
|
|
noisyConfig->insert(1, camera1.pose());
|
|
noisyConfig->insert(2, camera2.pose());
|
|
noisyConfig->insert(1, landmarkNoisy);
|
|
|
|
// create graph
|
|
shared_ptr<Graph> graph(new Graph());
|
|
|
|
// create equality constraints for poses
|
|
graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(1, camera1.pose())));
|
|
graph->push_back(shared_ptr<PoseConstraint>(new PoseConstraint(2, camera2.pose())));
|
|
|
|
// create VSLAM factors
|
|
Point2 z1 = camera1.project(landmark);
|
|
if (verbose) z1.print("z1");
|
|
shared_vf vf1(new ProjectionFactor(z1, 1.0, 1, 1, shK));
|
|
graph->push_back(vf1);
|
|
Point2 z2 = camera2.project(landmark);
|
|
if (verbose) z2.print("z2");
|
|
shared_vf vf2(new ProjectionFactor(z2, 1.0, 2, 1, shK));
|
|
graph->push_back(vf2);
|
|
|
|
if (verbose) {
|
|
graph->print("Graph after construction");
|
|
noisyConfig->print("Initial config");
|
|
}
|
|
|
|
// create ordering
|
|
shared_ptr<Ordering> ord(new Ordering());
|
|
*ord += "x1", "x2", "l1";
|
|
|
|
// create optimizer
|
|
VOptimizer optimizer0(graph, ord, noisyConfig);
|
|
|
|
if (verbose)
|
|
cout << "Initial Error: " << optimizer0.error() << endl;
|
|
|
|
// use Levenberg-Marquardt optimization
|
|
double relThresh = 1e-5, absThresh = 1e-5;
|
|
VOptimizer optimizer(optimizer0.levenbergMarquardt(relThresh, absThresh, VOptimizer::SILENT));
|
|
|
|
// verify
|
|
DOUBLES_EQUAL(0.0, optimizer.error(), 1e-9);
|
|
|
|
// check if correct
|
|
if (verbose) {
|
|
optimizer.config()->print("After iteration");
|
|
cout << "Final error: " << optimizer.error() << endl;
|
|
}
|
|
CHECK(assert_equal(*truthConfig,*(optimizer.config())));
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
namespace sqp_stereo {
|
|
|
|
// binary constraint between landmarks
|
|
/** g(x) = x-y = 0 */
|
|
Vector g(const Config& config, const list<Symbol>& keys) {
|
|
return config[PointKey(keys.front().index())].vector()
|
|
- config[PointKey(keys.back().index())].vector();
|
|
}
|
|
|
|
/** jacobian at l1 */
|
|
Matrix G1(const Config& config, const list<Symbol>& keys) {
|
|
return eye(3);
|
|
}
|
|
|
|
/** jacobian at l2 */
|
|
Matrix G2(const Config& config, const list<Symbol>& keys) {
|
|
return -1.0 * eye(3);
|
|
}
|
|
|
|
} // \namespace sqp_stereo
|
|
|
|
/* ********************************************************************* */
|
|
VGraph stereoExampleGraph() {
|
|
// create initial estimates
|
|
Rot3 faceDownY(Matrix_(3,3,
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
SimpleCamera camera1(K, pose1);
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
SimpleCamera camera2(K, pose2);
|
|
Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
Point3 landmark2(1.0, 5.0, 0.0);
|
|
|
|
// create graph
|
|
VGraph graph;
|
|
|
|
// create equality constraints for poses
|
|
graph.push_back(shared_ptr<PoseConstraint>(new PoseConstraint(1, camera1.pose())));
|
|
graph.push_back(shared_ptr<PoseConstraint>(new PoseConstraint(2, camera2.pose())));
|
|
|
|
// create factors
|
|
Point2 z1 = camera1.project(landmark1);
|
|
shared_vf vf1(new ProjectionFactor(z1, 1.0, 1, 1, shK));
|
|
graph.push_back(vf1);
|
|
Point2 z2 = camera2.project(landmark2);
|
|
shared_vf vf2(new ProjectionFactor(z2, 1.0, 2, 2, shK));
|
|
graph.push_back(vf2);
|
|
|
|
// create the binary equality constraint between the landmarks
|
|
// NOTE: this is really just a linear constraint that is exactly the same
|
|
// as the previous examples
|
|
list<Symbol> keys; keys += "l1", "l2";
|
|
visualSLAM::PointKey l1(1), l2(2);
|
|
shared_ptr<VNLC2> c2(
|
|
new VNLC2(boost::bind(sqp_stereo::g, _1, keys),
|
|
l1, boost::bind(sqp_stereo::G1, _1, keys),
|
|
l2, boost::bind(sqp_stereo::G2, _1, keys),
|
|
3, "L12"));
|
|
graph.push_back(c2);
|
|
|
|
return graph;
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
boost::shared_ptr<VConfig> stereoExampleTruthConfig() {
|
|
// create initial estimates
|
|
Rot3 faceDownY(Matrix_(3,3,
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
SimpleCamera camera1(K, pose1);
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
SimpleCamera camera2(K, pose2);
|
|
Point3 landmark1(1.0, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
Point3 landmark2(1.0, 5.0, 0.0);
|
|
|
|
// create config
|
|
boost::shared_ptr<Config> truthConfig(new Config);
|
|
truthConfig->insert(1, camera1.pose());
|
|
truthConfig->insert(2, camera2.pose());
|
|
truthConfig->insert(1, landmark1);
|
|
truthConfig->insert(2, landmark2); // create two landmarks in same place
|
|
|
|
return truthConfig;
|
|
}
|
|
|
|
/* *********************************************************************
|
|
* SQP version of the above stereo example,
|
|
* with the initial case as the ground truth
|
|
*/
|
|
TEST (SQP, stereo_sqp ) {
|
|
bool verbose = false;
|
|
|
|
// get a graph
|
|
VGraph graph = stereoExampleGraph();
|
|
if (verbose) graph.print("Graph after construction");
|
|
|
|
// get the truth config
|
|
boost::shared_ptr<VConfig> truthConfig = stereoExampleTruthConfig();
|
|
|
|
// create ordering
|
|
Ordering ord;
|
|
ord += "x1", "x2", "l1", "l2";
|
|
|
|
// create optimizer
|
|
VSOptimizer optimizer(graph, ord, truthConfig);
|
|
|
|
// optimize
|
|
VSOptimizer afterOneIteration = optimizer.iterate();
|
|
|
|
// check if correct
|
|
CHECK(assert_equal(*truthConfig,*(afterOneIteration.config())));
|
|
}
|
|
|
|
/* *********************************************************************
|
|
* SQP version of the above stereo example,
|
|
* with noise in the initial estimate
|
|
*/
|
|
TEST (SQP, stereo_sqp_noisy ) {
|
|
bool verbose = false;
|
|
|
|
// get a graph
|
|
Graph graph = stereoExampleGraph();
|
|
|
|
// create initial data
|
|
Rot3 faceDownY(Matrix_(3,3,
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
Point3 landmark1(0.5, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
Point3 landmark2(1.5, 5.0, 0.0);
|
|
|
|
// noisy config
|
|
boost::shared_ptr<Config> initConfig(new Config);
|
|
initConfig->insert(1, pose1);
|
|
initConfig->insert(2, pose2);
|
|
initConfig->insert(1, landmark1);
|
|
initConfig->insert(2, landmark2); // create two landmarks in same place
|
|
|
|
// create ordering
|
|
Ordering ord;
|
|
ord += "x1", "x2", "l1", "l2";
|
|
|
|
// create optimizer
|
|
VSOptimizer optimizer(graph, ord, initConfig);
|
|
|
|
// optimize
|
|
double start_error = optimizer.error();
|
|
int maxIt = 2;
|
|
for (int i=0; i<maxIt; ++i) {
|
|
if (verbose) cout << "\n ************************** \n"
|
|
<< " Iteration: " << i << endl;
|
|
//if (verbose) optimizer.graph()->print();
|
|
if (verbose) optimizer.config()->print();
|
|
if (verbose)
|
|
optimizer = optimizer.iterate(VSOptimizer::FULL);
|
|
else
|
|
optimizer = optimizer.iterate(VSOptimizer::SILENT);
|
|
}
|
|
|
|
if (verbose) cout << "Initial Error: " << start_error << "\n"
|
|
<< "Final Error: " << optimizer.error() << endl;
|
|
|
|
// get the truth config
|
|
boost::shared_ptr<Config> truthConfig = stereoExampleTruthConfig();
|
|
|
|
if (verbose) {
|
|
initConfig->print("Initial Config");
|
|
truthConfig->print("Truth Config");
|
|
optimizer.config()->print("After optimization");
|
|
}
|
|
|
|
// check if correct
|
|
CHECK(assert_equal(*truthConfig,*(optimizer.config())));
|
|
}
|
|
|
|
/* *********************************************************************
|
|
* SQP version of the above stereo example,
|
|
* with noise in the initial estimate and manually specified
|
|
* lagrange multipliers
|
|
*/
|
|
TEST (SQP, stereo_sqp_noisy_manualLagrange ) {
|
|
bool verbose = false;
|
|
|
|
// get a graph
|
|
Graph graph = stereoExampleGraph();
|
|
|
|
// create initial data
|
|
Rot3 faceDownY(Matrix_(3,3,
|
|
1.0, 0.0, 0.0,
|
|
0.0, 0.0, 1.0,
|
|
0.0, 1.0, 0.0));
|
|
Pose3 pose1(faceDownY, Point3()); // origin, left camera
|
|
Pose3 pose2(faceDownY, Point3(2.0, 0.0, 0.0)); // 2 units to the left
|
|
Point3 landmark1(0.5, 5.0, 0.0); //centered between the cameras, 5 units away
|
|
Point3 landmark2(1.5, 5.0, 0.0);
|
|
|
|
// noisy config
|
|
boost::shared_ptr<Config> initConfig(new Config);
|
|
initConfig->insert(1, pose1);
|
|
initConfig->insert(2, pose2);
|
|
initConfig->insert(1, landmark1);
|
|
initConfig->insert(2, landmark2); // create two landmarks in same place
|
|
|
|
// create ordering with lagrange multiplier included
|
|
Ordering ord;
|
|
ord += "x1", "x2", "l1", "l2", "L12";
|
|
|
|
// create lagrange multipliers
|
|
VSOptimizer::shared_vconfig initLagrangeConfig(new VectorConfig);
|
|
initLagrangeConfig->insert("L12", Vector_(3, 0.0, 0.0, 0.0));
|
|
|
|
// create optimizer
|
|
VSOptimizer optimizer(graph, ord, initConfig, initLagrangeConfig);
|
|
|
|
// optimize
|
|
double start_error = optimizer.error();
|
|
int maxIt = 5;
|
|
for (int i=0; i<maxIt; ++i) {
|
|
if (verbose) {
|
|
cout << "\n ************************** \n"
|
|
<< " Iteration: " << i << endl;
|
|
optimizer.config()->print("Config Before Iteration");
|
|
optimizer.configLagrange()->print("Lagrange Before Iteration");
|
|
optimizer = optimizer.iterate(VSOptimizer::FULL);
|
|
}
|
|
else
|
|
optimizer = optimizer.iterate(VSOptimizer::SILENT);
|
|
}
|
|
|
|
if (verbose) cout << "Initial Error: " << start_error << "\n"
|
|
<< "Final Error: " << optimizer.error() << endl;
|
|
|
|
// get the truth config
|
|
boost::shared_ptr<Config> truthConfig = stereoExampleTruthConfig();
|
|
|
|
if (verbose) {
|
|
initConfig->print("Initial Config");
|
|
truthConfig->print("Truth Config");
|
|
optimizer.config()->print("After optimization");
|
|
}
|
|
|
|
// check if correct
|
|
CHECK(assert_equal(*truthConfig,*(optimizer.config())));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|