83 lines
3.0 KiB
C++
83 lines
3.0 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testInferenceB.cpp
|
|
* @brief Unit tests for functionality declared in inference.h
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <gtsam/nonlinear/Symbol.h>
|
|
#include <gtsam/linear/GaussianSequentialSolver.h>
|
|
#include <gtsam/linear/GaussianMultifrontalSolver.h>
|
|
#include <gtsam/slam/planarSLAM.h>
|
|
|
|
#include <tests/smallExample.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// Convenience for named keys
|
|
using symbol_shorthand::X;
|
|
using symbol_shorthand::L;
|
|
|
|
/* ************************************************************************* */
|
|
// The tests below test the *generic* inference algorithms. Some of these have
|
|
// specialized versions in the derived classes GaussianFactorGraph etc...
|
|
/* ************************************************************************* */
|
|
|
|
/* ************************************************************************* */
|
|
TEST( inference, marginals )
|
|
{
|
|
using namespace example;
|
|
// create and marginalize a small Bayes net on "x"
|
|
GaussianBayesNet cbn = createSmallGaussianBayesNet();
|
|
vector<Index> xvar; xvar.push_back(0);
|
|
GaussianBayesNet actual = *GaussianSequentialSolver(
|
|
*GaussianSequentialSolver(GaussianFactorGraph(cbn)).jointFactorGraph(xvar)).eliminate();
|
|
|
|
// expected is just scalar Gaussian on x
|
|
GaussianBayesNet expected = scalarGaussian(0, 4, sqrt(2.0));
|
|
CHECK(assert_equal(expected,actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( inference, marginals2)
|
|
{
|
|
planarSLAM::Graph fg;
|
|
SharedDiagonal poseModel(noiseModel::Isotropic::Sigma(3, 0.1));
|
|
SharedDiagonal pointModel(noiseModel::Isotropic::Sigma(3, 0.1));
|
|
|
|
fg.addPosePrior(X(0), Pose2(), poseModel);
|
|
fg.addRelativePose(X(0), X(1), Pose2(1.0,0.0,0.0), poseModel);
|
|
fg.addRelativePose(X(1), X(2), Pose2(1.0,0.0,0.0), poseModel);
|
|
fg.addBearingRange(X(0), L(0), Rot2(), 1.0, pointModel);
|
|
fg.addBearingRange(X(1), L(0), Rot2(), 1.0, pointModel);
|
|
fg.addBearingRange(X(2), L(0), Rot2(), 1.0, pointModel);
|
|
|
|
Values init;
|
|
init.insert(X(0), Pose2(0.0,0.0,0.0));
|
|
init.insert(X(1), Pose2(1.0,0.0,0.0));
|
|
init.insert(X(2), Pose2(2.0,0.0,0.0));
|
|
init.insert(L(0), Point2(1.0,1.0));
|
|
|
|
Ordering ordering(*fg.orderingCOLAMD(init));
|
|
FactorGraph<GaussianFactor>::shared_ptr gfg(fg.linearize(init, ordering));
|
|
GaussianMultifrontalSolver solver(*gfg);
|
|
solver.marginalFactor(ordering[L(0)]);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|