831 lines
30 KiB
C++
831 lines
30 KiB
C++
/**
|
|
* @file testGaussianISAM2.cpp
|
|
* @brief Unit tests for GaussianISAM2
|
|
* @author Michael Kaess
|
|
*/
|
|
|
|
#include <gtsam/base/debug.h>
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <gtsam/inference/SymbolicFactorGraph.h>
|
|
#include <gtsam/nonlinear/Ordering.h>
|
|
#include <gtsam/linear/GaussianBayesNet.h>
|
|
#include <gtsam/linear/GaussianSequentialSolver.h>
|
|
#include <gtsam/linear/GaussianBayesTree.h>
|
|
#include <gtsam/linear/JacobianFactorGraph.h>
|
|
#include <gtsam/nonlinear/ISAM2.h>
|
|
#include <tests/smallExample.h>
|
|
#include <gtsam/slam/planarSLAM.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/assign/std/list.hpp> // for operator +=
|
|
#include <boost/assign.hpp>
|
|
using namespace boost::assign;
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using boost::shared_ptr;
|
|
|
|
const double tol = 1e-4;
|
|
|
|
// SETDEBUG("ISAM2 update", true);
|
|
// SETDEBUG("ISAM2 update verbose", true);
|
|
// SETDEBUG("ISAM2 recalculate", true);
|
|
|
|
// Set up parameters
|
|
SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.1, 0.1, M_PI/100.0));
|
|
SharedDiagonal brNoise = noiseModel::Diagonal::Sigmas(Vector_(2, M_PI/100.0, 0.1));
|
|
|
|
ISAM2 createSlamlikeISAM2(
|
|
boost::optional<Values&> init_values = boost::none,
|
|
boost::optional<planarSLAM::Graph&> full_graph = boost::none,
|
|
const ISAM2Params& params = ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, true)) {
|
|
|
|
// These variables will be reused and accumulate factors and values
|
|
ISAM2 isam(params);
|
|
Values fullinit;
|
|
planarSLAM::Graph fullgraph;
|
|
|
|
// i keeps track of the time step
|
|
size_t i = 0;
|
|
|
|
// Add a prior at time 0 and update isam
|
|
{
|
|
planarSLAM::Graph newfactors;
|
|
newfactors.addPosePrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((0), Pose2(0.01, 0.01, 0.01));
|
|
fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
|
|
|
|
isam.update(newfactors, init);
|
|
}
|
|
|
|
// Add odometry from time 0 to time 5
|
|
for( ; i<5; ++i) {
|
|
planarSLAM::Graph newfactors;
|
|
newfactors.addRelativePose(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
|
|
isam.update(newfactors, init);
|
|
}
|
|
|
|
// Add odometry from time 5 to 6 and landmark measurement at time 5
|
|
{
|
|
planarSLAM::Graph newfactors;
|
|
newfactors.addRelativePose(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
|
|
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(1.01, 0.01, 0.01));
|
|
init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
|
|
init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
|
|
fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
|
|
fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
|
|
fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
|
|
|
|
isam.update(newfactors, init);
|
|
++ i;
|
|
}
|
|
|
|
// Add odometry from time 6 to time 10
|
|
for( ; i<10; ++i) {
|
|
planarSLAM::Graph newfactors;
|
|
newfactors.addRelativePose(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
|
|
isam.update(newfactors, init);
|
|
}
|
|
|
|
// Add odometry from time 10 to 11 and landmark measurement at time 10
|
|
{
|
|
planarSLAM::Graph newfactors;
|
|
newfactors.addRelativePose(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
|
|
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(6.9, 0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
|
|
|
|
isam.update(newfactors, init);
|
|
++ i;
|
|
}
|
|
|
|
if (full_graph)
|
|
*full_graph = fullgraph;
|
|
|
|
if (init_values)
|
|
*init_values = fullinit;
|
|
|
|
return isam;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST_UNSAFE(ISAM2, ImplAddVariables) {
|
|
|
|
// Create initial state
|
|
Values theta;
|
|
theta.insert(0, Pose2(.1, .2, .3));
|
|
theta.insert(100, Point2(.4, .5));
|
|
Values newTheta;
|
|
newTheta.insert(1, Pose2(.6, .7, .8));
|
|
|
|
VectorValues delta;
|
|
delta.insert(0, Vector_(3, .1, .2, .3));
|
|
delta.insert(1, Vector_(2, .4, .5));
|
|
|
|
VectorValues deltaNewton;
|
|
deltaNewton.insert(0, Vector_(3, .1, .2, .3));
|
|
deltaNewton.insert(1, Vector_(2, .4, .5));
|
|
|
|
VectorValues deltaRg;
|
|
deltaRg.insert(0, Vector_(3, .1, .2, .3));
|
|
deltaRg.insert(1, Vector_(2, .4, .5));
|
|
|
|
vector<bool> replacedKeys(2, false);
|
|
|
|
Ordering ordering; ordering += 100, 0;
|
|
|
|
// Verify initial state
|
|
LONGS_EQUAL(0, ordering[100]);
|
|
LONGS_EQUAL(1, ordering[0]);
|
|
EXPECT(assert_equal(delta[0], delta[ordering[100]]));
|
|
EXPECT(assert_equal(delta[1], delta[ordering[0]]));
|
|
|
|
// Create expected state
|
|
Values thetaExpected;
|
|
thetaExpected.insert(0, Pose2(.1, .2, .3));
|
|
thetaExpected.insert(100, Point2(.4, .5));
|
|
thetaExpected.insert(1, Pose2(.6, .7, .8));
|
|
|
|
VectorValues deltaExpected;
|
|
deltaExpected.insert(0, Vector_(3, .1, .2, .3));
|
|
deltaExpected.insert(1, Vector_(2, .4, .5));
|
|
deltaExpected.insert(2, Vector_(3, 0.0, 0.0, 0.0));
|
|
|
|
VectorValues deltaNewtonExpected;
|
|
deltaNewtonExpected.insert(0, Vector_(3, .1, .2, .3));
|
|
deltaNewtonExpected.insert(1, Vector_(2, .4, .5));
|
|
deltaNewtonExpected.insert(2, Vector_(3, 0.0, 0.0, 0.0));
|
|
|
|
VectorValues deltaRgExpected;
|
|
deltaRgExpected.insert(0, Vector_(3, .1, .2, .3));
|
|
deltaRgExpected.insert(1, Vector_(2, .4, .5));
|
|
deltaRgExpected.insert(2, Vector_(3, 0.0, 0.0, 0.0));
|
|
|
|
vector<bool> replacedKeysExpected(3, false);
|
|
|
|
Ordering orderingExpected; orderingExpected += 100, 0, 1;
|
|
|
|
// Expand initial state
|
|
ISAM2::Impl::AddVariables(newTheta, theta, delta, deltaNewton, deltaRg, replacedKeys, ordering);
|
|
|
|
EXPECT(assert_equal(thetaExpected, theta));
|
|
EXPECT(assert_equal(deltaExpected, delta));
|
|
EXPECT(assert_equal(deltaNewtonExpected, deltaNewton));
|
|
EXPECT(assert_equal(deltaRgExpected, deltaRg));
|
|
EXPECT(assert_container_equality(replacedKeysExpected, replacedKeys));
|
|
EXPECT(assert_equal(orderingExpected, ordering));
|
|
}
|
|
/* ************************************************************************* */
|
|
TEST_UNSAFE(ISAM2, ImplRemoveVariables) {
|
|
|
|
// Create initial state
|
|
Values theta;
|
|
theta.insert(0, Pose2(.1, .2, .3));
|
|
theta.insert(1, Pose2(.6, .7, .8));
|
|
theta.insert(100, Point2(.4, .5));
|
|
|
|
SymbolicFactorGraph sfg;
|
|
sfg.push_back(boost::make_shared<IndexFactor>(Index(0), Index(2)));
|
|
sfg.push_back(boost::make_shared<IndexFactor>(Index(0), Index(1)));
|
|
VariableIndex variableIndex(sfg);
|
|
|
|
VectorValues delta;
|
|
delta.insert(0, Vector_(3, .1, .2, .3));
|
|
delta.insert(1, Vector_(3, .4, .5, .6));
|
|
delta.insert(2, Vector_(2, .7, .8));
|
|
|
|
VectorValues deltaNewton;
|
|
deltaNewton.insert(0, Vector_(3, .1, .2, .3));
|
|
deltaNewton.insert(1, Vector_(3, .4, .5, .6));
|
|
deltaNewton.insert(2, Vector_(2, .7, .8));
|
|
|
|
VectorValues deltaRg;
|
|
deltaRg.insert(0, Vector_(3, .1, .2, .3));
|
|
deltaRg.insert(1, Vector_(3, .4, .5, .6));
|
|
deltaRg.insert(2, Vector_(2, .7, .8));
|
|
|
|
vector<bool> replacedKeys(3, false);
|
|
replacedKeys[0] = true;
|
|
replacedKeys[1] = false;
|
|
replacedKeys[2] = true;
|
|
|
|
Ordering ordering; ordering += 100, 1, 0;
|
|
|
|
ISAM2::Nodes nodes(3);
|
|
|
|
// Verify initial state
|
|
LONGS_EQUAL(0, ordering[100]);
|
|
LONGS_EQUAL(1, ordering[1]);
|
|
LONGS_EQUAL(2, ordering[0]);
|
|
|
|
// Create expected state
|
|
Values thetaExpected;
|
|
thetaExpected.insert(0, Pose2(.1, .2, .3));
|
|
thetaExpected.insert(100, Point2(.4, .5));
|
|
|
|
SymbolicFactorGraph sfgRemoved;
|
|
sfgRemoved.push_back(boost::make_shared<IndexFactor>(Index(0), Index(1)));
|
|
sfgRemoved.push_back(SymbolicFactorGraph::sharedFactor()); // Add empty factor to keep factor indices consistent
|
|
VariableIndex variableIndexExpected(sfgRemoved);
|
|
|
|
VectorValues deltaExpected;
|
|
deltaExpected.insert(0, Vector_(3, .1, .2, .3));
|
|
deltaExpected.insert(1, Vector_(2, .7, .8));
|
|
|
|
VectorValues deltaNewtonExpected;
|
|
deltaNewtonExpected.insert(0, Vector_(3, .1, .2, .3));
|
|
deltaNewtonExpected.insert(1, Vector_(2, .7, .8));
|
|
|
|
VectorValues deltaRgExpected;
|
|
deltaRgExpected.insert(0, Vector_(3, .1, .2, .3));
|
|
deltaRgExpected.insert(1, Vector_(2, .7, .8));
|
|
|
|
vector<bool> replacedKeysExpected(2, true);
|
|
|
|
Ordering orderingExpected; orderingExpected += 100, 0;
|
|
|
|
ISAM2::Nodes nodesExpected(2);
|
|
|
|
// Reduce initial state
|
|
FastSet<Key> unusedKeys;
|
|
unusedKeys.insert(1);
|
|
vector<size_t> removedFactorsI; removedFactorsI.push_back(1);
|
|
SymbolicFactorGraph removedFactors; removedFactors.push_back(sfg[1]);
|
|
variableIndex.remove(removedFactorsI, removedFactors);
|
|
GaussianFactorGraph linearFactors;
|
|
ISAM2::Impl::RemoveVariables(unusedKeys, ISAM2::sharedClique(), theta, variableIndex, delta, deltaNewton, deltaRg,
|
|
replacedKeys, ordering, nodes, linearFactors);
|
|
|
|
EXPECT(assert_equal(thetaExpected, theta));
|
|
EXPECT(assert_equal(variableIndexExpected, variableIndex));
|
|
EXPECT(assert_equal(deltaExpected, delta));
|
|
EXPECT(assert_equal(deltaNewtonExpected, deltaNewton));
|
|
EXPECT(assert_equal(deltaRgExpected, deltaRg));
|
|
EXPECT(assert_container_equality(replacedKeysExpected, replacedKeys));
|
|
EXPECT(assert_equal(orderingExpected, ordering));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
//TEST(ISAM2, IndicesFromFactors) {
|
|
//
|
|
// using namespace gtsam::planarSLAM;
|
|
// typedef GaussianISAM2<Values>::Impl Impl;
|
|
//
|
|
// Ordering ordering; ordering += (0), (0), (1);
|
|
// planarSLAM::Graph graph;
|
|
// graph.addPosePrior((0), Pose2(), noiseModel::Unit::Create(Pose2::dimension));
|
|
// graph.addRange((0), (0), 1.0, noiseModel::Unit::Create(1));
|
|
//
|
|
// FastSet<Index> expected;
|
|
// expected.insert(0);
|
|
// expected.insert(1);
|
|
//
|
|
// FastSet<Index> actual = Impl::IndicesFromFactors(ordering, graph);
|
|
//
|
|
// EXPECT(assert_equal(expected, actual));
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
//TEST(ISAM2, CheckRelinearization) {
|
|
//
|
|
// typedef GaussianISAM2<Values>::Impl Impl;
|
|
//
|
|
// // Create values where indices 1 and 3 are above the threshold of 0.1
|
|
// VectorValues values;
|
|
// values.reserve(4, 10);
|
|
// values.push_back_preallocated(Vector_(2, 0.09, 0.09));
|
|
// values.push_back_preallocated(Vector_(3, 0.11, 0.11, 0.09));
|
|
// values.push_back_preallocated(Vector_(3, 0.09, 0.09, 0.09));
|
|
// values.push_back_preallocated(Vector_(2, 0.11, 0.11));
|
|
//
|
|
// // Create a permutation
|
|
// Permutation permutation(4);
|
|
// permutation[0] = 2;
|
|
// permutation[1] = 0;
|
|
// permutation[2] = 1;
|
|
// permutation[3] = 3;
|
|
//
|
|
// Permuted<VectorValues> permuted(permutation, values);
|
|
//
|
|
// // After permutation, the indices above the threshold are 2 and 2
|
|
// FastSet<Index> expected;
|
|
// expected.insert(2);
|
|
// expected.insert(3);
|
|
//
|
|
// // Indices checked by CheckRelinearization
|
|
// FastSet<Index> actual = Impl::CheckRelinearization(permuted, 0.1);
|
|
//
|
|
// EXPECT(assert_equal(expected, actual));
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, optimize2) {
|
|
|
|
// Create initialization
|
|
Values theta;
|
|
theta.insert((0), Pose2(0.01, 0.01, 0.01));
|
|
|
|
// Create conditional
|
|
Vector d(3); d << -0.1, -0.1, -0.31831;
|
|
Matrix R(3,3); R <<
|
|
10, 0.0, 0.0,
|
|
0.0, 10, 0.0,
|
|
0.0, 0.0, 31.8309886;
|
|
GaussianConditional::shared_ptr conditional(new GaussianConditional(0, d, R, Vector::Ones(3)));
|
|
|
|
// Create ordering
|
|
Ordering ordering; ordering += (0);
|
|
|
|
// Expected vector
|
|
VectorValues expected(1, 3);
|
|
conditional->solveInPlace(expected);
|
|
|
|
// Clique
|
|
ISAM2::sharedClique clique(
|
|
ISAM2::Clique::Create(make_pair(conditional,GaussianFactor::shared_ptr())));
|
|
VectorValues actual(theta.dims(ordering));
|
|
internal::optimizeInPlace<ISAM2::Base>(clique, actual);
|
|
|
|
// expected.print("expected: ");
|
|
// actual.print("actual: ");
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool isam_check(const planarSLAM::Graph& fullgraph, const Values& fullinit, const ISAM2& isam, Test& test, TestResult& result) {
|
|
|
|
TestResult& result_ = result;
|
|
const SimpleString name_ = test.getName();
|
|
|
|
Values actual = isam.calculateEstimate();
|
|
Ordering ordering = isam.getOrdering(); // *fullgraph.orderingCOLAMD(fullinit).first;
|
|
GaussianFactorGraph linearized = *fullgraph.linearize(fullinit, ordering);
|
|
// linearized.print("Expected linearized: ");
|
|
GaussianBayesNet gbn = *GaussianSequentialSolver(linearized).eliminate();
|
|
// gbn.print("Expected bayesnet: ");
|
|
VectorValues delta = optimize(gbn);
|
|
Values expected = fullinit.retract(delta, ordering);
|
|
|
|
bool isamEqual = assert_equal(expected, actual);
|
|
|
|
// The following two checks make sure that the cached gradients are maintained and used correctly
|
|
|
|
// Check gradient at each node
|
|
bool nodeGradientsOk = true;
|
|
typedef ISAM2::sharedClique sharedClique;
|
|
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
|
|
// Compute expected gradient
|
|
FactorGraph<JacobianFactor> jfg;
|
|
jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
|
|
VectorValues expectedGradient(*allocateVectorValues(isam));
|
|
gradientAtZero(jfg, expectedGradient);
|
|
// Compare with actual gradients
|
|
int variablePosition = 0;
|
|
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
|
|
const int dim = clique->conditional()->dim(jit);
|
|
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
|
|
bool gradOk = assert_equal(expectedGradient[*jit], actual);
|
|
EXPECT(gradOk);
|
|
nodeGradientsOk = nodeGradientsOk && gradOk;
|
|
variablePosition += dim;
|
|
}
|
|
bool dimOk = clique->gradientContribution().rows() == variablePosition;
|
|
EXPECT(dimOk);
|
|
nodeGradientsOk = nodeGradientsOk && dimOk;
|
|
}
|
|
|
|
// Check gradient
|
|
VectorValues expectedGradient(*allocateVectorValues(isam));
|
|
gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
|
|
VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
|
|
VectorValues actualGradient(*allocateVectorValues(isam));
|
|
gradientAtZero(isam, actualGradient);
|
|
bool expectedGradOk = assert_equal(expectedGradient2, expectedGradient);
|
|
EXPECT(expectedGradOk);
|
|
bool totalGradOk = assert_equal(expectedGradient, actualGradient);
|
|
EXPECT(totalGradOk);
|
|
|
|
return nodeGradientsOk && expectedGradOk && totalGradOk && isamEqual;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, slamlike_solution_gaussnewton)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
planarSLAM::Graph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, slamlike_solution_dogleg)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
planarSLAM::Graph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false));
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, slamlike_solution_gaussnewton_qr)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
planarSLAM::Graph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, false, ISAM2Params::QR));
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, slamlike_solution_dogleg_qr)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
planarSLAM::Graph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false, false, ISAM2Params::QR));
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, clone) {
|
|
|
|
ISAM2 clone1;
|
|
|
|
{
|
|
ISAM2 isam = createSlamlikeISAM2();
|
|
clone1 = isam;
|
|
|
|
ISAM2 clone2(isam);
|
|
|
|
// Modify original isam
|
|
NonlinearFactorGraph factors;
|
|
factors.add(BetweenFactor<Pose2>(0, 10,
|
|
isam.calculateEstimate<Pose2>(0).between(isam.calculateEstimate<Pose2>(10)), noiseModel::Unit::Create(3)));
|
|
isam.update(factors);
|
|
|
|
CHECK(assert_equal(createSlamlikeISAM2(), clone2));
|
|
}
|
|
|
|
// This is to (perhaps unsuccessfully) try to currupt unallocated memory referenced
|
|
// if the references in the iSAM2 copy point to the old instance which deleted at
|
|
// the end of the {...} section above.
|
|
ISAM2 temp = createSlamlikeISAM2();
|
|
|
|
CHECK(assert_equal(createSlamlikeISAM2(), clone1));
|
|
CHECK(assert_equal(clone1, temp));
|
|
|
|
// Check clone empty
|
|
ISAM2 isam;
|
|
clone1 = isam;
|
|
CHECK(assert_equal(ISAM2(), clone1));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, permute_cached) {
|
|
typedef boost::shared_ptr<ISAM2Clique> sharedISAM2Clique;
|
|
|
|
// Construct expected permuted BayesTree (variable 2 has been changed to 1)
|
|
BayesTree<GaussianConditional, ISAM2Clique> expected;
|
|
expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
|
boost::make_shared<GaussianConditional>(pair_list_of
|
|
(3, Matrix_(1,1,1.0))
|
|
(4, Matrix_(1,1,2.0)),
|
|
2, Vector_(1,1.0), Vector_(1,1.0)), // p(3,4)
|
|
HessianFactor::shared_ptr())))); // Cached: empty
|
|
expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
|
boost::make_shared<GaussianConditional>(pair_list_of
|
|
(2, Matrix_(1,1,1.0))
|
|
(3, Matrix_(1,1,2.0)),
|
|
1, Vector_(1,1.0), Vector_(1,1.0)), // p(2|3)
|
|
boost::make_shared<HessianFactor>(3, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(3)
|
|
expected.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
|
boost::make_shared<GaussianConditional>(pair_list_of
|
|
(0, Matrix_(1,1,1.0))
|
|
(2, Matrix_(1,1,2.0)),
|
|
1, Vector_(1,1.0), Vector_(1,1.0)), // p(0|2)
|
|
boost::make_shared<HessianFactor>(1, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(1)
|
|
// Change variable 2 to 1
|
|
expected.root()->children().front()->conditional()->keys()[0] = 1;
|
|
expected.root()->children().front()->children().front()->conditional()->keys()[1] = 1;
|
|
|
|
// Construct unpermuted BayesTree
|
|
BayesTree<GaussianConditional, ISAM2Clique> actual;
|
|
actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
|
boost::make_shared<GaussianConditional>(pair_list_of
|
|
(3, Matrix_(1,1,1.0))
|
|
(4, Matrix_(1,1,2.0)),
|
|
2, Vector_(1,1.0), Vector_(1,1.0)), // p(3,4)
|
|
HessianFactor::shared_ptr())))); // Cached: empty
|
|
actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
|
boost::make_shared<GaussianConditional>(pair_list_of
|
|
(2, Matrix_(1,1,1.0))
|
|
(3, Matrix_(1,1,2.0)),
|
|
1, Vector_(1,1.0), Vector_(1,1.0)), // p(2|3)
|
|
boost::make_shared<HessianFactor>(3, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(3)
|
|
actual.insert(sharedISAM2Clique(new ISAM2Clique(make_pair(
|
|
boost::make_shared<GaussianConditional>(pair_list_of
|
|
(0, Matrix_(1,1,1.0))
|
|
(2, Matrix_(1,1,2.0)),
|
|
1, Vector_(1,1.0), Vector_(1,1.0)), // p(0|2)
|
|
boost::make_shared<HessianFactor>(2, Matrix_(1,1,1.0), Vector_(1,1.0), 0.0))))); // Cached: p(2)
|
|
|
|
// Create permutation that changes variable 2 -> 0
|
|
Permutation permutation = Permutation::Identity(5);
|
|
permutation[2] = 1;
|
|
|
|
// Permute BayesTree
|
|
actual.root()->permuteWithInverse(permutation);
|
|
|
|
// Check
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, removeFactors)
|
|
{
|
|
// This test builds a graph in the same way as the "slamlike" test above, but
|
|
// then removes the 2nd-to-last landmark measurement
|
|
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
planarSLAM::Graph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
|
|
|
// Remove the 2nd measurement on landmark 0 (Key 100)
|
|
FastVector<size_t> toRemove;
|
|
toRemove.push_back(12);
|
|
isam.update(planarSLAM::Graph(), Values(), toRemove);
|
|
|
|
// Remove the factor from the full system
|
|
fullgraph.remove(12);
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST_UNSAFE(ISAM2, removeVariables)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
planarSLAM::Graph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
|
|
|
// Remove the measurement on landmark 0 (Key 100)
|
|
FastVector<size_t> toRemove;
|
|
toRemove.push_back(7);
|
|
toRemove.push_back(14);
|
|
isam.update(planarSLAM::Graph(), Values(), toRemove);
|
|
|
|
// Remove the factors and variable from the full system
|
|
fullgraph.remove(7);
|
|
fullgraph.remove(14);
|
|
fullinit.erase(100);
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST_UNSAFE(ISAM2, swapFactors)
|
|
{
|
|
// This test builds a graph in the same way as the "slamlike" test above, but
|
|
// then swaps the 2nd-to-last landmark measurement with a different one
|
|
|
|
Values fullinit;
|
|
planarSLAM::Graph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph);
|
|
|
|
// Remove the measurement on landmark 0 and replace with a different one
|
|
{
|
|
size_t swap_idx = isam.getFactorsUnsafe().size()-2;
|
|
FastVector<size_t> toRemove;
|
|
toRemove.push_back(swap_idx);
|
|
fullgraph.remove(swap_idx);
|
|
|
|
planarSLAM::Graph swapfactors;
|
|
// swapfactors.addBearingRange(10, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise); // original factor
|
|
swapfactors.addBearingRange(10, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 5.0, brNoise);
|
|
fullgraph.push_back(swapfactors);
|
|
isam.update(swapfactors, Values(), toRemove);
|
|
}
|
|
|
|
// Compare solutions
|
|
EXPECT(assert_equal(fullgraph, planarSLAM::Graph(isam.getFactorsUnsafe())));
|
|
EXPECT(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
|
|
// Check gradient at each node
|
|
typedef ISAM2::sharedClique sharedClique;
|
|
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
|
|
// Compute expected gradient
|
|
FactorGraph<JacobianFactor> jfg;
|
|
jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
|
|
VectorValues expectedGradient(*allocateVectorValues(isam));
|
|
gradientAtZero(jfg, expectedGradient);
|
|
// Compare with actual gradients
|
|
int variablePosition = 0;
|
|
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
|
|
const int dim = clique->conditional()->dim(jit);
|
|
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
|
|
EXPECT(assert_equal(expectedGradient[*jit], actual));
|
|
variablePosition += dim;
|
|
}
|
|
EXPECT_LONGS_EQUAL(clique->gradientContribution().rows(), variablePosition);
|
|
}
|
|
|
|
// Check gradient
|
|
VectorValues expectedGradient(*allocateVectorValues(isam));
|
|
gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
|
|
VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
|
|
VectorValues actualGradient(*allocateVectorValues(isam));
|
|
gradientAtZero(isam, actualGradient);
|
|
EXPECT(assert_equal(expectedGradient2, expectedGradient));
|
|
EXPECT(assert_equal(expectedGradient, actualGradient));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, constrained_ordering)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
|
Values fullinit;
|
|
planarSLAM::Graph fullgraph;
|
|
|
|
// We will constrain x3 and x4 to the end
|
|
FastMap<Key, int> constrained;
|
|
constrained.insert(make_pair((3), 1));
|
|
constrained.insert(make_pair((4), 2));
|
|
|
|
// i keeps track of the time step
|
|
size_t i = 0;
|
|
|
|
// Add a prior at time 0 and update isam
|
|
{
|
|
planarSLAM::Graph newfactors;
|
|
newfactors.addPosePrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((0), Pose2(0.01, 0.01, 0.01));
|
|
fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
|
|
|
|
isam.update(newfactors, init);
|
|
}
|
|
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
|
|
// Add odometry from time 0 to time 5
|
|
for( ; i<5; ++i) {
|
|
planarSLAM::Graph newfactors;
|
|
newfactors.addRelativePose(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
|
|
if(i >= 3)
|
|
isam.update(newfactors, init, FastVector<size_t>(), constrained);
|
|
else
|
|
isam.update(newfactors, init);
|
|
}
|
|
|
|
// Add odometry from time 5 to 6 and landmark measurement at time 5
|
|
{
|
|
planarSLAM::Graph newfactors;
|
|
newfactors.addRelativePose(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
|
|
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(1.01, 0.01, 0.01));
|
|
init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
|
|
init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
|
|
fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
|
|
fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
|
|
fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
|
|
|
|
isam.update(newfactors, init, FastVector<size_t>(), constrained);
|
|
++ i;
|
|
}
|
|
|
|
// Add odometry from time 6 to time 10
|
|
for( ; i<10; ++i) {
|
|
planarSLAM::Graph newfactors;
|
|
newfactors.addRelativePose(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
|
|
isam.update(newfactors, init, FastVector<size_t>(), constrained);
|
|
}
|
|
|
|
// Add odometry from time 10 to 11 and landmark measurement at time 10
|
|
{
|
|
planarSLAM::Graph newfactors;
|
|
newfactors.addRelativePose(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
newfactors.addBearingRange(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
|
|
newfactors.addBearingRange(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(6.9, 0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
|
|
|
|
isam.update(newfactors, init, FastVector<size_t>(), constrained);
|
|
++ i;
|
|
}
|
|
|
|
// Compare solutions
|
|
EXPECT(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
|
|
// Check that x3 and x4 are last, but either can come before the other
|
|
EXPECT(isam.getOrdering()[(3)] == 12 && isam.getOrdering()[(4)] == 13);
|
|
|
|
// Check gradient at each node
|
|
typedef ISAM2::sharedClique sharedClique;
|
|
BOOST_FOREACH(const sharedClique& clique, isam.nodes()) {
|
|
// Compute expected gradient
|
|
FactorGraph<JacobianFactor> jfg;
|
|
jfg.push_back(JacobianFactor::shared_ptr(new JacobianFactor(*clique->conditional())));
|
|
VectorValues expectedGradient(*allocateVectorValues(isam));
|
|
gradientAtZero(jfg, expectedGradient);
|
|
// Compare with actual gradients
|
|
int variablePosition = 0;
|
|
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
|
|
const int dim = clique->conditional()->dim(jit);
|
|
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
|
|
EXPECT(assert_equal(expectedGradient[*jit], actual));
|
|
variablePosition += dim;
|
|
}
|
|
LONGS_EQUAL(clique->gradientContribution().rows(), variablePosition);
|
|
}
|
|
|
|
// Check gradient
|
|
VectorValues expectedGradient(*allocateVectorValues(isam));
|
|
gradientAtZero(FactorGraph<JacobianFactor>(isam), expectedGradient);
|
|
VectorValues expectedGradient2(gradient(FactorGraph<JacobianFactor>(isam), VectorValues::Zero(expectedGradient)));
|
|
VectorValues actualGradient(*allocateVectorValues(isam));
|
|
gradientAtZero(isam, actualGradient);
|
|
EXPECT(assert_equal(expectedGradient2, expectedGradient));
|
|
EXPECT(assert_equal(expectedGradient, actualGradient));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, slamlike_solution_partial_relinearization_check)
|
|
{
|
|
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
planarSLAM::Graph fullgraph;
|
|
ISAM2Params params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false);
|
|
params.enablePartialRelinearizationCheck = true;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, params);
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|