165 lines
5.6 KiB
C++
165 lines
5.6 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file FrobeniusFactor.h
|
|
* @date March 2019
|
|
* @author Frank Dellaert
|
|
* @brief Various factors that minimize some Frobenius norm
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/geometry/Rot2.h>
|
|
#include <gtsam/geometry/Rot3.h>
|
|
#include <gtsam/geometry/SOn.h>
|
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* When creating (any) FrobeniusFactor we can convert a Rot/Pose BetweenFactor
|
|
* noise model into a n-dimensional isotropic noise
|
|
* model used to weight the Frobenius norm.
|
|
* If the noise model passed is null we return a n-dimensional isotropic noise
|
|
* model with sigma=1.0.
|
|
* If not, we we check if the d-dimensional noise model on rotations is
|
|
* isotropic. If it is, we extend to 'n' dimensions, otherwise we throw an
|
|
* error.
|
|
* If the noise model is a robust error model, we use the sigmas of the
|
|
* underlying noise model.
|
|
*
|
|
* If defaultToUnit == false throws an exception on unexepcted input.
|
|
*/
|
|
GTSAM_EXPORT SharedNoiseModel
|
|
ConvertNoiseModel(const SharedNoiseModel &model, size_t n,
|
|
bool defaultToUnit = true);
|
|
|
|
/**
|
|
* FrobeniusPrior calculates the Frobenius norm between a given matrix and an
|
|
* element of SO(3) or SO(4).
|
|
*/
|
|
template <class Rot>
|
|
class FrobeniusPrior : public NoiseModelFactorN<Rot> {
|
|
enum { Dim = Rot::VectorN2::RowsAtCompileTime };
|
|
using MatrixNN = typename Rot::MatrixNN;
|
|
Eigen::Matrix<double, Dim, 1> vecM_; ///< vectorized matrix to approximate
|
|
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
|
|
/// Constructor
|
|
FrobeniusPrior(Key j, const MatrixNN& M,
|
|
const SharedNoiseModel& model = nullptr)
|
|
: NoiseModelFactorN<Rot>(ConvertNoiseModel(model, Dim), j) {
|
|
vecM_ << Eigen::Map<const Matrix>(M.data(), Dim, 1);
|
|
}
|
|
|
|
/// Error is just Frobenius norm between Rot element and vectorized matrix M.
|
|
Vector evaluateError(const Rot& R,
|
|
boost::optional<Matrix&> H = boost::none) const override {
|
|
return R.vec(H) - vecM_; // Jacobian is computed only when needed.
|
|
}
|
|
};
|
|
|
|
/**
|
|
* FrobeniusFactor calculates the Frobenius norm between rotation matrices.
|
|
* The template argument can be any fixed-size SO<N>.
|
|
*/
|
|
template <class Rot>
|
|
class FrobeniusFactor : public NoiseModelFactorN<Rot, Rot> {
|
|
enum { Dim = Rot::VectorN2::RowsAtCompileTime };
|
|
|
|
public:
|
|
/// Constructor
|
|
FrobeniusFactor(Key j1, Key j2, const SharedNoiseModel& model = nullptr)
|
|
: NoiseModelFactorN<Rot, Rot>(ConvertNoiseModel(model, Dim), j1,
|
|
j2) {}
|
|
|
|
/// Error is just Frobenius norm between rotation matrices.
|
|
Vector evaluateError(const Rot& R1, const Rot& R2,
|
|
boost::optional<Matrix&> H1 = boost::none,
|
|
boost::optional<Matrix&> H2 = boost::none) const override {
|
|
Vector error = R2.vec(H2) - R1.vec(H1);
|
|
if (H1) *H1 = -*H1;
|
|
return error;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* FrobeniusBetweenFactor is a BetweenFactor that evaluates the Frobenius norm
|
|
* of the rotation error between measured and predicted (rather than the
|
|
* Logmap of the error). This factor is only defined for fixed-dimension types,
|
|
* and in fact only SO3 and SO4 really work, as we need SO<N>::AdjointMap.
|
|
*/
|
|
template <class Rot>
|
|
class FrobeniusBetweenFactor : public NoiseModelFactorN<Rot, Rot> {
|
|
Rot R12_; ///< measured rotation between R1 and R2
|
|
Eigen::Matrix<double, Rot::dimension, Rot::dimension>
|
|
R2hat_H_R1_; ///< fixed derivative of R2hat wrpt R1
|
|
enum { Dim = Rot::VectorN2::RowsAtCompileTime };
|
|
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
|
|
/// @name Constructor
|
|
/// @{
|
|
|
|
/// Construct from two keys and measured rotation
|
|
FrobeniusBetweenFactor(Key j1, Key j2, const Rot& R12,
|
|
const SharedNoiseModel& model = nullptr)
|
|
: NoiseModelFactorN<Rot, Rot>(
|
|
ConvertNoiseModel(model, Dim), j1, j2),
|
|
R12_(R12),
|
|
R2hat_H_R1_(R12.inverse().AdjointMap()) {}
|
|
|
|
/// @}
|
|
/// @name Testable
|
|
/// @{
|
|
|
|
/// print with optional string
|
|
void
|
|
print(const std::string &s,
|
|
const KeyFormatter &keyFormatter = DefaultKeyFormatter) const override {
|
|
std::cout << s << "FrobeniusBetweenFactor<" << demangle(typeid(Rot).name())
|
|
<< ">(" << keyFormatter(this->template key<1>()) << ","
|
|
<< keyFormatter(this->template key<2>()) << ")\n";
|
|
traits<Rot>::Print(R12_, " R12: ");
|
|
this->noiseModel_->print(" noise model: ");
|
|
}
|
|
|
|
/// assert equality up to a tolerance
|
|
bool equals(const NonlinearFactor &expected,
|
|
double tol = 1e-9) const override {
|
|
auto e = dynamic_cast<const FrobeniusBetweenFactor *>(&expected);
|
|
return e != nullptr && NoiseModelFactorN<Rot, Rot>::equals(*e, tol) &&
|
|
traits<Rot>::Equals(this->R12_, e->R12_, tol);
|
|
}
|
|
|
|
/// @}
|
|
/// @name NoiseModelFactorN methods
|
|
/// @{
|
|
|
|
/// Error is Frobenius norm between R1*R12 and R2.
|
|
Vector evaluateError(const Rot& R1, const Rot& R2,
|
|
boost::optional<Matrix&> H1 = boost::none,
|
|
boost::optional<Matrix&> H2 = boost::none) const override {
|
|
const Rot R2hat = R1.compose(R12_);
|
|
Eigen::Matrix<double, Dim, Rot::dimension> vec_H_R2hat;
|
|
Vector error = R2.vec(H2) - R2hat.vec(H1 ? &vec_H_R2hat : nullptr);
|
|
if (H1) *H1 = -vec_H_R2hat * R2hat_H_R1_;
|
|
return error;
|
|
}
|
|
/// @}
|
|
};
|
|
|
|
} // namespace gtsam
|