89 lines
3.1 KiB
C++
89 lines
3.1 KiB
C++
/*
|
|
* @file JacobianFactorSVD.h
|
|
* @date Oct 27, 2013
|
|
* @uthor Frank Dellaert
|
|
*/
|
|
|
|
#pragma once
|
|
#include <gtsam/linear/RegularJacobianFactor.h>
|
|
|
|
namespace gtsam {
|
|
/**
|
|
* JacobianFactor for Schur complement that uses the "Nullspace Trick" by
|
|
* Mourikis et al.
|
|
*
|
|
* This trick is equivalent to the Schur complement, but can be faster.
|
|
* In essence, the linear factor |E*dp + F*dX - b|, where p is point and X are
|
|
* poses, is multiplied by Enull, a matrix that spans the left nullspace of E,
|
|
* i.e., The mx3 matrix is analyzed with SVD as E = [Erange Enull]*S*V (mxm *
|
|
* mx3 * 3x3) where Enull is an m x (m-3) matrix Then Enull'*E*dp = 0, and
|
|
* |Enull'*E*dp + Enull'*F*dX - Enull'*b| == |Enull'*F*dX - Enull'*b|
|
|
* Normally F is m x 6*numKeys, and Enull'*F yields an (m-3) x 6*numKeys matrix.
|
|
*
|
|
* The code below assumes that F is block diagonal and is given as a vector of
|
|
* ZDim*D blocks. Example: m = 4 (2 measurements), Enull = 4*1, F = 4*12 (for
|
|
* D=6) Then Enull'*F = 1*4 * 4*12 = 1*12, but each 1*6 piece can be computed as
|
|
* a 1x2 * 2x6 multiplication.
|
|
*/
|
|
template<size_t D, size_t ZDim>
|
|
class JacobianFactorSVD: public RegularJacobianFactor<D> {
|
|
|
|
typedef RegularJacobianFactor<D> Base;
|
|
typedef Eigen::Matrix<double, ZDim, D> MatrixZD; // e.g 2 x 6 with Z=Point2
|
|
typedef std::pair<Key, Matrix> KeyMatrix;
|
|
|
|
public:
|
|
|
|
/// Default constructor
|
|
JacobianFactorSVD() {
|
|
}
|
|
|
|
/// Empty constructor with keys.
|
|
JacobianFactorSVD(const KeyVector& keys,
|
|
const SharedDiagonal& model = SharedDiagonal())
|
|
: Base() {
|
|
Matrix zeroMatrix = Matrix::Zero(0, D);
|
|
Vector zeroVector = Vector::Zero(0);
|
|
std::vector<KeyMatrix> QF;
|
|
QF.reserve(keys.size());
|
|
for(const Key& key: keys)
|
|
QF.push_back(KeyMatrix(key, zeroMatrix));
|
|
JacobianFactor::fillTerms(QF, zeroVector, model);
|
|
}
|
|
|
|
/**
|
|
* @brief Construct a new JacobianFactorSVD object, createing a reduced-rank
|
|
* Jacobian factor on the CameraSet.
|
|
*
|
|
* @param keys keys associated with F blocks.
|
|
* @param Fblocks CameraSet derivatives, ZDim*D blocks of block-diagonal F
|
|
* @param Enull a reduced point derivative
|
|
* @param b right-hand side
|
|
* @param model noise model
|
|
*/
|
|
JacobianFactorSVD(
|
|
const KeyVector& keys,
|
|
const std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> >& Fblocks,
|
|
const Matrix& Enull, const Vector& b,
|
|
const SharedDiagonal& model = SharedDiagonal())
|
|
: Base() {
|
|
size_t numKeys = Enull.rows() / ZDim;
|
|
size_t m2 = ZDim * numKeys - 3; // TODO: is this not just Enull.rows()?
|
|
// PLAIN nullptr SPACE TRICK
|
|
// Matrix Q = Enull * Enull.transpose();
|
|
// for(const KeyMatrixZD& it: Fblocks)
|
|
// QF.push_back(KeyMatrix(it.first, Q.block(0, 2 * j++, m2, 2) * it.second));
|
|
// JacobianFactor factor(QF, Q * b);
|
|
std::vector<KeyMatrix> QF;
|
|
QF.reserve(numKeys);
|
|
for (size_t k = 0; k < Fblocks.size(); ++k) {
|
|
Key key = keys[k];
|
|
QF.emplace_back(
|
|
key, (Enull.transpose()).block(0, ZDim * k, m2, ZDim) * Fblocks[k]);
|
|
}
|
|
JacobianFactor::fillTerms(QF, Enull.transpose() * b, model);
|
|
}
|
|
};
|
|
|
|
}
|