46 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			46 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Matlab
		
	
	
function [ RS, J ] = eliminate(Ab, js)
 | 
						|
%ELIMINATE This is a simple scalar-level function for eliminating the
 | 
						|
%matrix Ab into a conditional part RS and a marginal part J.  The scalars
 | 
						|
%in js are the ones eliminated (corresponding to columns of Ab).  Note that
 | 
						|
%the returned matrices RS and J will both be the same width as Ab and will
 | 
						|
%contain columns of all zeros - that is, the column indices will stay the
 | 
						|
%same in all matrices, unlike in GTSAM where matrix data is only stored for
 | 
						|
%involved variables.
 | 
						|
 | 
						|
if size(Ab,1) < size(Ab,2)-1
 | 
						|
    Ab = [ Ab; zeros(size(Ab,2)-1-size(Ab,1), size(Ab,2)) ];
 | 
						|
end
 | 
						|
 | 
						|
% Permute columns
 | 
						|
origCols = 1:size(Ab,2);
 | 
						|
jsFront = js;
 | 
						|
jsBack = setdiff(origCols, js);
 | 
						|
jsPermuted = [ jsFront jsBack ];
 | 
						|
Abpermuted = Ab(:,jsPermuted);
 | 
						|
 | 
						|
% Eliminate (this sparse stuff prevents qr from introducing a permutation
 | 
						|
R = full(qr(sparse(Abpermuted)));
 | 
						|
 | 
						|
% Find row split
 | 
						|
firstRowOfMarginal = numel(jsFront) + 1;
 | 
						|
for i = size(R,1) : -1 : 1
 | 
						|
    firstNnz = find(R(i,:), 1, 'first');
 | 
						|
    if ~isempty(firstNnz)
 | 
						|
        if firstNnz > numel(jsFront)
 | 
						|
            firstRowOfMarginal = i;
 | 
						|
        else
 | 
						|
            break;
 | 
						|
        end
 | 
						|
    end
 | 
						|
end
 | 
						|
 | 
						|
% Undo permutation
 | 
						|
Runpermuted(:,jsPermuted) = R;
 | 
						|
 | 
						|
% Split up
 | 
						|
RS = Runpermuted(1:firstRowOfMarginal-1, :);
 | 
						|
J = Runpermuted(firstRowOfMarginal:size(Ab,2)-1, :);
 | 
						|
 | 
						|
end
 | 
						|
 |