gtsam/gtsam/hybrid/tests/testSerializationHybrid.cpp

153 lines
5.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testSerializationHybrid.cpp
* @brief Unit tests for hybrid serialization
* @author Varun Agrawal
* @date January 2023
*/
#include <gtsam/base/serializationTestHelpers.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridBayesTree.h>
#include <gtsam/hybrid/HybridConditional.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianConditional.h>
#include "Switching.h"
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using symbol_shorthand::M;
using symbol_shorthand::X;
using symbol_shorthand::Z;
using namespace serializationTestHelpers;
BOOST_CLASS_EXPORT_GUID(Factor, "gtsam_Factor");
BOOST_CLASS_EXPORT_GUID(HybridFactor, "gtsam_HybridFactor");
BOOST_CLASS_EXPORT_GUID(JacobianFactor, "gtsam_JacobianFactor");
BOOST_CLASS_EXPORT_GUID(GaussianConditional, "gtsam_GaussianConditional");
BOOST_CLASS_EXPORT_GUID(DiscreteConditional, "gtsam_DiscreteConditional");
BOOST_CLASS_EXPORT_GUID(DecisionTreeFactor, "gtsam_DecisionTreeFactor");
using ADT = AlgebraicDecisionTree<Key>;
BOOST_CLASS_EXPORT_GUID(ADT, "gtsam_AlgebraicDecisionTree");
BOOST_CLASS_EXPORT_GUID(ADT::Leaf, "gtsam_AlgebraicDecisionTree_Leaf");
BOOST_CLASS_EXPORT_GUID(ADT::Choice, "gtsam_AlgebraicDecisionTree_Choice")
BOOST_CLASS_EXPORT_GUID(GaussianMixtureFactor, "gtsam_GaussianMixtureFactor");
BOOST_CLASS_EXPORT_GUID(GaussianMixtureFactor::Factors,
"gtsam_GaussianMixtureFactor_Factors");
BOOST_CLASS_EXPORT_GUID(GaussianMixtureFactor::Factors::Leaf,
"gtsam_GaussianMixtureFactor_Factors_Leaf");
BOOST_CLASS_EXPORT_GUID(GaussianMixtureFactor::Factors::Choice,
"gtsam_GaussianMixtureFactor_Factors_Choice");
BOOST_CLASS_EXPORT_GUID(GaussianMixture, "gtsam_GaussianMixture");
BOOST_CLASS_EXPORT_GUID(GaussianMixture::Conditionals,
"gtsam_GaussianMixture_Conditionals");
BOOST_CLASS_EXPORT_GUID(GaussianMixture::Conditionals::Leaf,
"gtsam_GaussianMixture_Conditionals_Leaf");
BOOST_CLASS_EXPORT_GUID(GaussianMixture::Conditionals::Choice,
"gtsam_GaussianMixture_Conditionals_Choice");
// Needed since GaussianConditional::FromMeanAndStddev uses it
BOOST_CLASS_EXPORT_GUID(noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
BOOST_CLASS_EXPORT_GUID(HybridBayesNet, "gtsam_HybridBayesNet");
/* ****************************************************************************/
// Test GaussianMixtureFactor serialization.
TEST(HybridSerialization, GaussianMixtureFactor) {
KeyVector continuousKeys{X(0)};
DiscreteKeys discreteKeys{{M(0), 2}};
auto A = Matrix::Zero(2, 1);
auto b0 = Matrix::Zero(2, 1);
auto b1 = Matrix::Ones(2, 1);
auto f0 = std::make_shared<JacobianFactor>(X(0), A, b0);
auto f1 = std::make_shared<JacobianFactor>(X(0), A, b1);
std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
const GaussianMixtureFactor factor(continuousKeys, discreteKeys, factors);
EXPECT(equalsObj<GaussianMixtureFactor>(factor));
EXPECT(equalsXML<GaussianMixtureFactor>(factor));
EXPECT(equalsBinary<GaussianMixtureFactor>(factor));
}
/* ****************************************************************************/
// Test HybridConditional serialization.
TEST(HybridSerialization, HybridConditional) {
const DiscreteKey mode(M(0), 2);
Matrix1 I = Matrix1::Identity();
const auto conditional = std::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 0.5));
const HybridConditional hc(conditional);
EXPECT(equalsObj<HybridConditional>(hc));
EXPECT(equalsXML<HybridConditional>(hc));
EXPECT(equalsBinary<HybridConditional>(hc));
}
/* ****************************************************************************/
// Test GaussianMixture serialization.
TEST(HybridSerialization, GaussianMixture) {
const DiscreteKey mode(M(0), 2);
Matrix1 I = Matrix1::Identity();
const auto conditional0 = std::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 0.5));
const auto conditional1 = std::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 3));
const GaussianMixture gm({Z(0)}, {X(0)}, {mode},
{conditional0, conditional1});
EXPECT(equalsObj<GaussianMixture>(gm));
EXPECT(equalsXML<GaussianMixture>(gm));
EXPECT(equalsBinary<GaussianMixture>(gm));
}
/* ****************************************************************************/
// Test HybridBayesNet serialization.
TEST(HybridSerialization, HybridBayesNet) {
Switching s(2);
HybridBayesNet hbn = *(s.linearizedFactorGraph.eliminateSequential());
EXPECT(equalsObj<HybridBayesNet>(hbn));
EXPECT(equalsXML<HybridBayesNet>(hbn));
EXPECT(equalsBinary<HybridBayesNet>(hbn));
}
/* ****************************************************************************/
// Test HybridBayesTree serialization.
TEST(HybridSerialization, HybridBayesTree) {
Switching s(2);
HybridBayesTree hbt = *(s.linearizedFactorGraph.eliminateMultifrontal());
EXPECT(equalsObj<HybridBayesTree>(hbt));
EXPECT(equalsXML<HybridBayesTree>(hbt));
EXPECT(equalsBinary<HybridBayesTree>(hbt));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */