gtsam/linear/GaussianConditional.cpp

193 lines
7.6 KiB
C++

/**
* @file GaussianConditional.cpp
* @brief Conditional Gaussian Base class
* @author Christian Potthast
*/
#include <string.h>
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/operation.hpp>
#include <boost/format.hpp>
#include <boost/lambda/bind.hpp>
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/base/Matrix-inl.h>
using namespace std;
namespace ublas = boost::numeric::ublas;
namespace gtsam {
/* ************************************************************************* */
GaussianConditional::GaussianConditional() : rsd_(matrix_) {}
/* ************************************************************************* */
GaussianConditional::GaussianConditional(varid_t key) : Conditional(key), rsd_(matrix_) {}
/* ************************************************************************* */
GaussianConditional::GaussianConditional(varid_t key,const Vector& d, const Matrix& R, const Vector& sigmas) :
Conditional(key), rsd_(matrix_), sigmas_(sigmas) {
assert(R.size1() <= R.size2());
size_t dims[] = { R.size2(), 1 };
rsd_.copyStructureFrom(rsd_type(matrix_, dims, dims+2, d.size()));
ublas::noalias(rsd_(0)) = ublas::triangular_adaptor<const Matrix, ublas::upper>(R);
ublas::noalias(get_d_()) = d;
}
/* ************************************************************************* */
GaussianConditional::GaussianConditional(varid_t key, const Vector& d, const Matrix& R,
varid_t name1, const Matrix& S, const Vector& sigmas) :
Conditional(key,name1), rsd_(matrix_), sigmas_(sigmas) {
assert(R.size1() <= R.size2());
size_t dims[] = { R.size2(), S.size2(), 1 };
rsd_.copyStructureFrom(rsd_type(matrix_, dims, dims+3, d.size()));
ublas::noalias(rsd_(0)) = ublas::triangular_adaptor<const Matrix, ublas::upper>(R);
ublas::noalias(rsd_(1)) = S;
ublas::noalias(get_d_()) = d;
}
/* ************************************************************************* */
GaussianConditional::GaussianConditional(varid_t key, const Vector& d, const Matrix& R,
varid_t name1, const Matrix& S, varid_t name2, const Matrix& T, const Vector& sigmas) :
Conditional(key,name1,name2), rsd_(matrix_), sigmas_(sigmas) {
assert(R.size1() <= R.size2());
size_t dims[] = { R.size2(), S.size2(), T.size2(), 1 };
rsd_.copyStructureFrom(rsd_type(matrix_, dims, dims+4, d.size()));
ublas::noalias(rsd_(0)) = ublas::triangular_adaptor<const Matrix, ublas::upper>(R);
ublas::noalias(rsd_(1)) = S;
ublas::noalias(rsd_(2)) = T;
ublas::noalias(get_d_()) = d;
}
/* ************************************************************************* */
GaussianConditional::GaussianConditional(varid_t key, const Vector& d, const Matrix& R, const list<pair<varid_t, Matrix> >& parents, const Vector& sigmas) :
rsd_(matrix_), sigmas_(sigmas) {
assert(R.size1() <= R.size2());
Conditional::nFrontal_ = 1;
Conditional::factor_.keys_.resize(1+parents.size());
size_t dims[1+parents.size()+1];
dims[0] = R.size2();
Conditional::factor_.keys_[0] = key;
size_t j=1;
for(std::list<std::pair<varid_t, Matrix> >::const_iterator parent=parents.begin(); parent!=parents.end(); ++parent) {
Conditional::factor_.keys_[j] = parent->first;
dims[j] = parent->second.size2();
++ j;
}
dims[j] = 1;
rsd_.copyStructureFrom(rsd_type(matrix_, dims, dims+1+parents.size()+1, d.size()));
ublas::noalias(rsd_(0)) = ublas::triangular_adaptor<const Matrix, ublas::upper>(R);
j = 1;
for(std::list<std::pair<varid_t, Matrix> >::const_iterator parent=parents.begin(); parent!=parents.end(); ++parent) {
ublas::noalias(rsd_(j)) = parent->second;
++ j;
}
ublas::noalias(get_d_()) = d;
}
/* ************************************************************************* */
void GaussianConditional::print(const string &s) const
{
cout << s << ": density on " << key() << endl;
gtsam::print(get_R(),"R");
for(const_iterator it = beginParents() ; it != endParents() ; it++ ) {
gtsam::print(get_S(it), (boost::format("A[%1%]")%(*it)).str());
}
gtsam::print(get_d(),"d");
gtsam::print(sigmas_,"sigmas");
}
/* ************************************************************************* */
bool GaussianConditional::equals(const GaussianConditional &c, double tol) const {
// check if the size of the parents_ map is the same
if (parents().size() != c.parents().size()) return false;
// check if R_ and d_ are linear independent
for (size_t i=0; i<rsd_.size1(); i++) {
list<Vector> rows1; rows1.push_back(row_(get_R(), i));
list<Vector> rows2; rows2.push_back(row_(c.get_R(), i));
// check if the matrices are the same
// iterate over the parents_ map
for (const_iterator it = beginParents(); it != endParents(); ++it) {
const_iterator it2 = c.beginParents() + (it-beginParents());
if(*it != *(it2))
return false;
rows1.push_back(row_(get_S(it), i));
rows2.push_back(row_(c.get_S(it2), i));
}
Vector row1 = concatVectors(rows1);
Vector row2 = concatVectors(rows2);
if (!linear_dependent(row1, row2, tol)) return false;
}
// check if sigmas are equal
if (!(equal_with_abs_tol(sigmas_, c.sigmas_, tol))) return false;
return true;
}
///* ************************************************************************* */
//void GaussianConditional::permuteWithInverse(const Permutation& inversePermutation) {
// Conditional::permuteWithInverse(inversePermutation);
// BOOST_FOREACH(Parents::value_type& parent, parents_) {
// parent.first = inversePermutation[parent.first];
// }
//#ifndef NDEBUG
// const_iterator parent = parents_.begin();
// Conditional::const_iterator baseParent = Conditional::parents_.begin();
// while(parent != parents_.end())
// assert((parent++)->first == *(baseParent++));
// assert(baseParent == Conditional::parents_.end());
//#endif
//}
//
///* ************************************************************************* */
//bool GaussianConditional::permuteSeparatorWithInverse(const Permutation& inversePermutation) {
// bool separatorChanged = Conditional::permuteSeparatorWithInverse(inversePermutation);
// BOOST_FOREACH(Parents::value_type& parent, parents_) {
// parent.first = inversePermutation[parent.first];
// }
//#ifndef NDEBUG
// const_iterator parent = parents_.begin();
// Conditional::const_iterator baseParent = Conditional::parents_.begin();
// while(parent != parents_.end())
// assert((parent++)->first == *(baseParent++));
// assert(baseParent == Conditional::parents_.end());
//#endif
// return separatorChanged;
//}
/* ************************************************************************* */
Vector GaussianConditional::solve(const VectorValues& x) const {
static const bool debug = false;
if(debug) print("Solving conditional ");
Vector rhs(get_d());
for (const_iterator parent = beginParents(); parent != endParents(); ++parent) {
ublas::axpy_prod(-get_S(parent), x[*parent], rhs, false);
// multiplyAdd(-1.0, get_S(parent), x[*parent], rhs);
}
if(debug) gtsam::print(get_R(), "Calling backSubstituteUpper on ");
if(debug) gtsam::print(rhs, "rhs: ");
if(debug) {
Vector soln = backSubstituteUpper(get_R(), rhs, false);
gtsam::print(soln, "back-substitution solution: ");
return soln;
} else
return backSubstituteUpper(get_R(), rhs, false);
}
/* ************************************************************************* */
Vector GaussianConditional::solve(const Permuted<VectorValues>& x) const {
Vector rhs(get_d());
for (const_iterator parent = beginParents(); parent != endParents(); ++parent) {
ublas::axpy_prod(-get_S(parent), x[*parent], rhs, false);
// multiplyAdd(-1.0, get_S(parent), x[*parent], rhs);
}
return backSubstituteUpper(get_R(), rhs, false);
}
}