gtsam/gtsam/nonlinear/GncParams.h

152 lines
5.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GncOptimizer.h
* @brief The GncOptimizer class
* @author Jingnan Shi
* @author Luca Carlone
* @author Frank Dellaert
*
* Implementation of the paper: Yang, Antonante, Tzoumas, Carlone, "Graduated Non-Convexity for Robust Spatial Perception:
* From Non-Minimal Solvers to Global Outlier Rejection", ICRA/RAL, 2020. (arxiv version: https://arxiv.org/pdf/1909.08605.pdf)
*
* See also:
* Antonante, Tzoumas, Yang, Carlone, "Outlier-Robust Estimation: Hardness, Minimally-Tuned Algorithms, and Applications",
* arxiv: https://arxiv.org/pdf/2007.15109.pdf, 2020.
*/
#pragma once
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
namespace gtsam {
/* ************************************************************************* */
/// Choice of robust loss function for GNC.
enum GncLossType {
GM /*Geman McClure*/,
TLS /*Truncated least squares*/
};
template<class BaseOptimizerParameters>
class GncParams {
public:
/// For each parameter, specify the corresponding optimizer: e.g., GaussNewtonParams -> GaussNewtonOptimizer.
typedef typename BaseOptimizerParameters::OptimizerType OptimizerType;
/// Verbosity levels
enum Verbosity {
SILENT = 0,
SUMMARY,
VALUES
};
/// Constructor.
GncParams(const BaseOptimizerParameters& baseOptimizerParams)
: baseOptimizerParams(baseOptimizerParams) {
}
/// Default constructor.
GncParams()
: baseOptimizerParams() {
}
/// GNC parameters.
BaseOptimizerParameters baseOptimizerParams; ///< Optimization parameters used to solve the weighted least squares problem at each GNC iteration
/// any other specific GNC parameters:
GncLossType lossType = TLS; ///< Default loss
size_t maxIterations = 100; ///< Maximum number of iterations
double muStep = 1.4; ///< Multiplicative factor to reduce/increase the mu in gnc
double relativeCostTol = 1e-5; ///< If relative cost change is below this threshold, stop iterating
double weightsTol = 1e-4; ///< If the weights are within weightsTol from being binary, stop iterating (only for TLS)
Verbosity verbosity = SILENT; ///< Verbosity level
std::vector<size_t> knownInliers = std::vector<size_t>(); ///< Slots in the factor graph corresponding to measurements that we know are inliers
/// Set the robust loss function to be used in GNC (chosen among the ones in GncLossType).
void setLossType(const GncLossType type) {
lossType = type;
}
/// Set the maximum number of iterations in GNC (changing the max nr of iters might lead to less accurate solutions and is not recommended).
void setMaxIterations(const size_t maxIter) {
std::cout
<< "setMaxIterations: changing the max nr of iters might lead to less accurate solutions and is not recommended! "
<< std::endl;
maxIterations = maxIter;
}
/// Set the graduated non-convexity step: at each GNC iteration, mu is updated as mu <- mu * muStep.
void setMuStep(const double step) {
muStep = step;
}
/// Set the maximum relative difference in mu values to stop iterating.
void setRelativeCostTol(double value) {
relativeCostTol = value;
}
/// Set the maximum difference between the weights and their rounding in {0,1} to stop iterating.
void setWeightsTol(double value) {
weightsTol = value;
}
/// Set the verbosity level.
void setVerbosityGNC(const Verbosity value) {
verbosity = value;
}
/** (Optional) Provide a vector of measurements that must be considered inliers. The enties in the vector
* corresponds to the slots in the factor graph. For instance, if you have a nonlinear factor graph nfg,
* and you provide knownIn = {0, 2, 15}, GNC will not apply outlier rejection to nfg[0], nfg[2], and nfg[15].
* This functionality is commonly used in SLAM when one may assume the odometry is outlier free, and
* only apply GNC to prune outliers from the loop closures.
* */
void setKnownInliers(const std::vector<size_t>& knownIn) {
for (size_t i = 0; i < knownIn.size(); i++)
knownInliers.push_back(knownIn[i]);
}
/// Equals.
bool equals(const GncParams& other, double tol = 1e-9) const {
return baseOptimizerParams.equals(other.baseOptimizerParams)
&& lossType == other.lossType && maxIterations == other.maxIterations
&& std::fabs(muStep - other.muStep) <= tol
&& verbosity == other.verbosity && knownInliers == other.knownInliers;
}
/// Print.
void print(const std::string& str) const {
std::cout << str << "\n";
switch (lossType) {
case GM:
std::cout << "lossType: Geman McClure" << "\n";
break;
case TLS:
std::cout << "lossType: Truncated Least-squares" << "\n";
break;
default:
throw std::runtime_error("GncParams::print: unknown loss type.");
}
std::cout << "maxIterations: " << maxIterations << "\n";
std::cout << "muStep: " << muStep << "\n";
std::cout << "relativeCostTol: " << relativeCostTol << "\n";
std::cout << "weightsTol: " << weightsTol << "\n";
std::cout << "verbosity: " << verbosity << "\n";
for (size_t i = 0; i < knownInliers.size(); i++)
std::cout << "knownInliers: " << knownInliers[i] << "\n";
baseOptimizerParams.print(str);
}
};
}