gtsam/cpp/numericalDerivative.h

166 lines
5.4 KiB
C++

/**
* @file numericalDerivative.h
* @brief Some functions to compute numerical derivatives
* @author Frank Dellaert
*/
// \callgraph
#pragma once
#include "Lie.h"
#include "Matrix.h"
//#define LINEARIZE_AT_IDENTITY
namespace gtsam {
/**
* Numerically compute gradient of scalar function
* Class X is the input argument
* The class X needs to have dim, expmap, logmap
*/
template<class X>
Vector numericalGradient(double (*h)(const X&), const X& x, double delta=1e-5) {
double hx = h(x);
double factor = 1.0/(2.0*delta);
const size_t n = x.dim();
Vector d(n,0.0), g(n,0.0);
for (size_t j=0;j<n;j++) {
d(j) += delta; double hxplus = h(expmap(x,d));
d(j) -= 2*delta; double hxmin = h(expmap(x,d));
d(j) += delta; g(j) = (hxplus-hxmin)*factor;
}
return g;
}
/**
* Compute numerical derivative in argument 1 of unary function
* @param h unary function yielding m-vector
* @param x n-dimensional value at which to evaluate h
* @param delta increment for numerical derivative
* Class Y is the output argument
* Class X is the input argument
* @return m*n Jacobian computed via central differencing
* Both classes X,Y need dim, expmap, logmap
*/
template<class Y, class X>
Matrix numericalDerivative11(Y (*h)(const X&), const X& x, double delta=1e-5) {
Y hx = h(x);
double factor = 1.0/(2.0*delta);
const size_t m = dim(hx), n = dim(x);
Vector d(n,0.0);
Matrix H = zeros(m,n);
for (size_t j=0;j<n;j++) {
#ifdef LINEARIZE_AT_IDENTITY
d(j) += delta; Vector hxplus = logmap(h(expmap(x,d)));
d(j) -= 2*delta; Vector hxmin = logmap(h(expmap(x,d)));
#else
d(j) += delta; Vector hxplus = logmap(hx, h(expmap(x,d)));
d(j) -= 2*delta; Vector hxmin = logmap(hx, h(expmap(x,d)));
#endif
d(j) += delta; Vector dh = (hxplus-hxmin)*factor;
for (size_t i=0;i<m;i++) H(i,j) = dh(i);
}
return H;
}
/**
* Compute numerical derivative in argument 1 of binary function
* @param h binary function yielding m-vector
* @param x1 n-dimensional first argument value
* @param x2 second argument value
* @param delta increment for numerical derivative
* @return m*n Jacobian computed via central differencing
* All classes Y,X1,X2 need dim, expmap, logmap
*/
template<class Y, class X1, class X2>
Matrix numericalDerivative21(Y (*h)(const X1&, const X2&),
const X1& x1, const X2& x2, double delta=1e-5) {
Y hx = h(x1,x2);
double factor = 1.0/(2.0*delta);
const size_t m = dim(hx), n = dim(x1);
Vector d(n,0.0);
Matrix H = zeros(m,n);
for (size_t j=0;j<n;j++) {
#ifdef LINEARIZE_AT_IDENTITY
d(j) += delta; Vector hxplus = logmap(h(expmap(x1,d),x2));
d(j) -= 2*delta; Vector hxmin = logmap(h(expmap(x1,d),x2));
#else
d(j) += delta; Vector hxplus = logmap(hx, h(expmap(x1,d),x2));
d(j) -= 2*delta; Vector hxmin = logmap(hx, h(expmap(x1,d),x2));
#endif
d(j) += delta; Vector dh = (hxplus-hxmin)*factor;
for (size_t i=0;i<m;i++) H(i,j) = dh(i);
}
return H;
}
/**
* Compute numerical derivative in argument 2 of binary function
* @param h binary function yielding m-vector
* @param x1 first argument value
* @param x2 n-dimensional second argument value
* @param delta increment for numerical derivative
* @return m*n Jacobian computed via central differencing
* All classes Y,X1,X2 need dim, expmap, logmap
*/
template<class Y, class X1, class X2>
Matrix numericalDerivative22
(Y (*h)(const X1&, const X2&),
const X1& x1, const X2& x2, double delta=1e-5)
{
Y hx = h(x1,x2);
double factor = 1.0/(2.0*delta);
const size_t m = dim(hx), n = dim(x2);
Vector d(n,0.0);
Matrix H = zeros(m,n);
for (size_t j=0;j<n;j++) {
#ifdef LINEARIZE_AT_IDENTITY
d(j) += delta; Vector hxplus = logmap(h(x1,expmap(x2,d)));
d(j) -= 2*delta; Vector hxmin = logmap(h(x1,expmap(x2,d)));
#else
d(j) += delta; Vector hxplus = logmap(hx, h(x1,expmap(x2,d)));
d(j) -= 2*delta; Vector hxmin = logmap(hx, h(x1,expmap(x2,d)));
#endif
d(j) += delta; Vector dh = (hxplus-hxmin)*factor;
for (size_t i=0;i<m;i++) H(i,j) = dh(i);
}
return H;
}
/**
* Compute numerical derivative in argument 1 of binary function
* @param h binary function yielding m-vector
* @param x1 n-dimensional first argument value
* @param x2 second argument value
* @param delta increment for numerical derivative
* @return m*n Jacobian computed via central differencing
* All classes Y,X1,X2,X3 need dim, expmap, logmap
*/
template<class Y, class X1, class X2, class X3>
Matrix numericalDerivative31
(Y (*h)(const X1&, const X2&, const X3&),
const X1& x1, const X2& x2, const X3& x3, double delta=1e-5)
{
Y hx = h(x1,x2,x3);
double factor = 1.0/(2.0*delta);
const size_t m = dim(hx), n = dim(x1);
Vector d(n,0.0);
Matrix H = zeros(m,n);
for (size_t j=0;j<n;j++) {
#ifdef LINEARIZE_AT_IDENTITY
d(j) += delta; Vector hxplus = logmap(h(expmap(x1,d),x2,x3));
d(j) -= 2*delta; Vector hxmin = logmap(h(expmap(x1,d),x2,x3));
#else
d(j) += delta; Vector hxplus = logmap(hx, h(expmap(x1,d),x2,x3));
d(j) -= 2*delta; Vector hxmin = logmap(hx, h(expmap(x1,d),x2,x3));
#endif
d(j) += delta; Vector dh = (hxplus-hxmin)*factor;
for (size_t i=0;i<m;i++) H(i,j) = dh(i);
}
return H;
}
}