gtsam/cpp/SubgraphPreconditioner-inl.h

83 lines
2.8 KiB
C++

/*
* SubgraphPreconditioner-inl.h
*
* Created on: Jan 17, 2010
* Author: nikai
* Description: subgraph preconditioning conjugate gradient solver
*/
#pragma once
#include <boost/tuple/tuple.hpp>
#include "SubgraphPreconditioner.h"
#include "graph-inl.h"
#include "iterative-inl.h"
#include "FactorGraph-inl.h"
using namespace std;
namespace gtsam {
/* ************************************************************************* */
template<class G, class T>
SubgraphPCG<G, T>::SubgraphPCG(const G& g, const T& theta0) {
initialize(g,theta0);
}
/* ************************************************************************* */
template<class G, class T>
void SubgraphPCG<G, T>::initialize(const G& g, const T& theta0) {
// generate spanning tree
PredecessorMap<Key> tree = g.template findMinimumSpanningTree<Key, Constraint>();
list<Key> keys = predecessorMap2Keys(tree);
// split the graph
if (verbose_) cout << "generating spanning tree and split the graph ...";
g.template split<Key, Constraint>(tree, T_, C_);
if (verbose_) cout << T_.size() << " and " << C_.size() << " factors" << endl;
// make the ordering
list<Symbol> symbols;
symbols.resize(keys.size());
std::transform(keys.begin(), keys.end(), symbols.begin(), key2symbol<Key>);
ordering_ = boost::shared_ptr<Ordering>(new Ordering(symbols));
// compose the approximate solution
Key root = keys.back();
theta_bar_ = composePoses<G, Constraint, Pose, T> (T_, tree, theta0[root]);
}
/* ************************************************************************* */
template<class G, class T>
boost::shared_ptr<SubgraphPreconditioner> SubgraphPCG<G, T>::linearize(const G& g, const T& theta_bar) const {
SubgraphPreconditioner::sharedFG Ab1 = T_.linearize_(theta_bar);
SubgraphPreconditioner::sharedFG Ab2 = C_.linearize_(theta_bar);
#ifdef TIMING
SubgraphPreconditioner::sharedBayesNet Rc1;
SubgraphPreconditioner::sharedConfig xbar;
#else
GaussianFactorGraph sacrificialAb1 = T_.linearize(theta_bar); // duplicate !!!!!
SubgraphPreconditioner::sharedBayesNet Rc1 = sacrificialAb1.eliminate_(*ordering_);
SubgraphPreconditioner::sharedConfig xbar = gtsam::optimize_(*Rc1);
#endif
return boost::shared_ptr<SubgraphPreconditioner>(new SubgraphPreconditioner(Ab1, Ab2, Rc1, xbar));
}
/* ************************************************************************* */
template<class G, class T>
VectorConfig SubgraphPCG<G, T>::optimize(SubgraphPreconditioner& system) const {
//TODO: 3 is hard coded here
VectorConfig zeros;
BOOST_FOREACH(const Symbol& j, *ordering_) zeros.insert(j,zero(Pose::dim()));
// Solve the subgraph PCG
VectorConfig ybar = conjugateGradients<SubgraphPreconditioner, VectorConfig,
Errors> (system, zeros, verbose_, epsilon_, epsilon_abs_, maxIterations_);
VectorConfig xbar = system.x(ybar);
return xbar;
}
}