gtsam/cpp/SQPOptimizer-inl.h

178 lines
6.0 KiB
C++

/*
* @file SQPOptimizer-inl.h
* @brief Implementation of the SQP Optimizer
* @author Alex Cunningham
*/
#pragma once
#include <boost/foreach.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign/std/map.hpp> // for insert
#include "GaussianFactorGraph.h"
#include "NonlinearFactorGraph.h"
#include "SQPOptimizer.h"
// implementations
#include "NonlinearConstraint-inl.h"
#include "NonlinearFactorGraph-inl.h"
using namespace std;
using namespace boost::assign;
namespace gtsam {
/* **************************************************************** */
template <class G, class C>
double constraintError(const G& graph, const C& config) {
// local typedefs
typedef typename G::const_iterator const_iterator;
typedef NonlinearConstraint<C> NLConstraint;
typedef boost::shared_ptr<NLConstraint > shared_c;
// accumulate error
double error = 0;
// find the constraints
for (const_iterator factor = graph.begin(); factor < graph.end(); factor++) {
const shared_c constraint = boost::shared_dynamic_cast<NLConstraint >(*factor);
if (constraint != NULL) {
Vector e = constraint->unwhitenedError(config);
error += inner_prod(trans(e),e);
}
}
return error;
}
/* **************************************************************** */
template <class G, class C>
SQPOptimizer<G,C>::SQPOptimizer(const G& graph, const Ordering& ordering,
shared_config config)
: graph_(&graph), ordering_(&ordering), full_ordering_(ordering),
config_(config), lagrange_config_(new VectorConfig), error_(graph.error(*config)),
constraint_error_(constraintError(graph, *config))
{
// local typedefs
typedef typename G::const_iterator const_iterator;
typedef NonlinearConstraint<C> NLConstraint;
typedef boost::shared_ptr<NLConstraint > shared_c;
// find the constraints
for (const_iterator factor = graph_->begin(); factor < graph_->end(); factor++) {
const shared_c constraint = boost::shared_dynamic_cast<NLConstraint >(*factor);
if (constraint != NULL) {
size_t p = constraint->nrConstraints();
// update ordering
string key = constraint->lagrangeKey();
full_ordering_ += key;
// initialize lagrange multipliers
lagrange_config_->insert(key, ones(p));
}
}
}
/* **************************************************************** */
template <class G, class C>
SQPOptimizer<G,C>::SQPOptimizer(const G& graph, const Ordering& ordering,
shared_config config, shared_vconfig lagrange)
: graph_(&graph), ordering_(&ordering), full_ordering_(ordering),
config_(config), lagrange_config_(lagrange), error_(graph.error(*config)),
constraint_error_(constraintError(graph, *config))
{
}
/* **************************************************************** */
template<class G, class C>
SQPOptimizer<G, C> SQPOptimizer<G, C>::iterate(Verbosity v) const {
bool verbose = v == SQPOptimizer<G, C>::FULL;
// local typedefs
typedef typename G::const_iterator const_iterator;
typedef NonlinearConstraint<C> NLConstraint;
typedef boost::shared_ptr<NLConstraint > shared_c;
// linearize the graph
GaussianFactorGraph fg;
// prepare an ordering of lagrange multipliers to remove
Ordering keysToRemove;
// iterate over all factors and linearize
for (const_iterator factor = graph_->begin(); factor < graph_->end(); factor++) {
const shared_c constraint = boost::shared_dynamic_cast<NLConstraint >(*factor);
if (constraint == NULL) {
// if a regular factor, linearize using the default linearization
GaussianFactor::shared_ptr f = (*factor)->linearize(*config_);
if (verbose) f->print("Regular Factor");
fg.push_back(f);
} else if (constraint->active(*config_)) {
// if a constraint, linearize using the constraint method (2 configs)
GaussianFactor::shared_ptr f, c;
boost::tie(f,c) = constraint->linearize(*config_, *lagrange_config_);
if (verbose) f->print("Constrained Factor");
if (verbose) c->print("Constraint");
fg.push_back(f);
fg.push_back(c);
} else {
if (verbose) constraint->print("Skipping...");
keysToRemove += constraint->lagrangeKey();
}
}
if (verbose) fg.print("Before Optimization");
// optimize linear graph to get full delta config
VectorConfig delta = fg.optimize(full_ordering_.subtract(keysToRemove));
if (verbose) delta.print("Delta Config");
// update both state variables
shared_config newConfig(new C(expmap(*config_, delta)));
shared_vconfig newLambdas(new VectorConfig(expmap(*lagrange_config_, delta)));
// construct a new optimizer
return SQPOptimizer<G, C>(*graph_, full_ordering_, newConfig, newLambdas);
}
/* **************************************************************** */
template<class G, class C>
SQPOptimizer<G, C> SQPOptimizer<G, C>::iterateSolve(double relThresh, double absThresh,
double constraintThresh, size_t maxIterations, Verbosity v) const {
bool verbose = v == SQPOptimizer<G, C>::FULL;
// do an iteration
SQPOptimizer<G, C> next = iterate(v);
// if converged or out of iterations, return result
if (maxIterations == 1 ||
next.checkConvergence(relThresh, absThresh, constraintThresh,
error_, constraint_error_))
return next;
else // otherwise, recurse with a lower maxIterations
return next.iterateSolve(relThresh, absThresh, constraintThresh,
maxIterations-1, v);
}
/* **************************************************************** */
template<class G, class C>
bool SQPOptimizer<G, C>::checkConvergence(double relThresh, double absThresh,
double constraintThresh, double full_error, double constraint_error) const {
// if error sufficiently low, then the system has converged
if (error_ < absThresh && constraint_error_ < constraintThresh)
return true;
// TODO: determine other cases
return false;
}
/* **************************************************************** */
template<class G, class C>
void SQPOptimizer<G, C>::print(const std::string& s) {
graph_->print("Nonlinear Graph");
ordering_->print("Initial Ordering");
full_ordering_.print("Ordering including all Lagrange Multipliers");
config_->print("Real Config");
lagrange_config_->print("Lagrange Multiplier Config");
}
}