gtsam/cpp/NoiseModel.cpp

332 lines
10 KiB
C++

/*
* NoiseModel
*
* Created on: Jan 13, 2010
* Author: Richard Roberts
* Author: Frank Dellaert
*/
#include <limits>
#include <iostream>
#include <typeinfo>
#include <stdexcept>
#ifdef GSL
#include <gsl/gsl_blas.h> // needed for gsl blas
#include <gsl/gsl_linalg.h>
#endif
#include <boost/numeric/ublas/lu.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/foreach.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/normal_distribution.hpp>
#include <boost/random/variate_generator.hpp>
#include "NoiseModel.h"
#include "SharedDiagonal.h"
namespace ublas = boost::numeric::ublas;
typedef ublas::matrix_column<Matrix> column;
static double inf = std::numeric_limits<double>::infinity();
using namespace std;
namespace gtsam {
namespace noiseModel {
/* ************************************************************************* */
// update A, b
// A' \define A_{S}-ar and b'\define b-ad
// Linear algebra: takes away projection on latest orthogonal
// Graph: make a new factor on the separator S
// __attribute__ ((noinline)) // uncomment to prevent inlining when profiling
static void updateAb(Matrix& Ab, int j, const Vector& a, const Vector& rd) {
size_t m = Ab.size1(), n = Ab.size2()-1;
#ifdef GSL
// Ab(0:m,j+1:n) = Ab(0:m,j+1:n) - a(0:m)*rd(j+1:end)'
// get a view for Ab
gsl_matrix_view Abg = gsl_matrix_view_array(Ab.data().begin(), m, n+1);
gsl_matrix_view Abg_view = gsl_matrix_submatrix (&(Abg.matrix), 0, j+1, m, n-j);
// get a view for a
gsl_vector_const_view ag = gsl_vector_const_view_array(a.data().begin(), m);
// get a view for r
gsl_vector_const_view rdg = gsl_vector_const_view_array(rd.data().begin()+j+1, n-j);
// rank one update
gsl_blas_dger (-1.0, &(ag.vector), &(rdg.vector), &(Abg_view.matrix));
#else
for (int i = 0; i < m; i++) { // update all rows
double ai = a(i);
double *Aij = Ab.data().begin() + i * (n+1) + j + 1;
const double *rptr = rd.data().begin() + j + 1;
// Ab(i,j+1:end) -= ai*rd(j+1:end)
for (int j2 = j + 1; j2 < n+1; j2++, Aij++, rptr++)
*Aij -= ai * (*rptr);
}
#endif
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance, bool smart) {
size_t m = covariance.size1(), n = covariance.size2();
if (m != n) throw invalid_argument("Gaussian::Covariance: covariance not square");
if (smart) {
// check all non-diagonal entries
int i,j;
for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
if (i != j && fabs(covariance(i, j) > 1e-9)) goto full;
Vector variances(n);
for (j = 0; j < n; j++) variances(j) = covariance(j,j);
return Diagonal::Variances(variances,true);
}
full: return shared_ptr(new Gaussian(n, inverse_square_root(covariance)));
}
void Gaussian::print(const string& name) const {
gtsam::print(thisR(), "Gaussian");
}
bool Gaussian::equals(const Base& expected, double tol) const {
const Gaussian* p = dynamic_cast<const Gaussian*> (&expected);
if (p == NULL) return false;
if (typeid(*this) != typeid(*p)) return false;
//if (!sqrt_information_) return true; // ALEX todo;
return equal_with_abs_tol(R(), p->R(), sqrt(tol));
}
Vector Gaussian::whiten(const Vector& v) const {
return thisR() * v;
}
Vector Gaussian::unwhiten(const Vector& v) const {
return backSubstituteUpper(thisR(), v);
}
double Gaussian::Mahalanobis(const Vector& v) const {
// Note: for Diagonal, which does ediv_, will be correct for constraints
Vector w = whiten(v);
return inner_prod(w, w);
}
Matrix Gaussian::Whiten(const Matrix& H) const {
return thisR() * H;
}
void Gaussian::WhitenInPlace(Matrix& H) const {
H = thisR() * H;
}
// General QR, see also special version in Constrained
SharedDiagonal Gaussian::QR(Matrix& Ab) const {
// get size(A) and maxRank
// TODO: really no rank problems ?
size_t m = Ab.size1(), n = Ab.size2()-1;
size_t maxRank = min(m,n);
// pre-whiten everything (cheaply if possible)
WhitenInPlace(Ab);
// Perform in-place Householder
householder_(Ab, maxRank);
return Unit::Create(maxRank);
}
/* ************************************************************************* */
// TODO: can we avoid calling reciprocal twice ?
Diagonal::Diagonal(const Vector& sigmas) :
Gaussian(sigmas.size()), invsigmas_(reciprocal(sigmas)), sigmas_(
sigmas) {
}
Diagonal::shared_ptr Diagonal::Variances(const Vector& variances, bool smart) {
if (smart) {
// check whether all the same entry
int j, n = variances.size();
for (j = 1; j < n; j++)
if (variances(j) != variances(0)) goto full;
return Isotropic::Variance(n, variances(0), true);
}
full: return shared_ptr(new Diagonal(esqrt(variances)));
}
void Diagonal::print(const string& name) const {
gtsam::print(sigmas_, "Diagonal sigmas " + name);
}
Vector Diagonal::whiten(const Vector& v) const {
return emul(v, invsigmas_);
}
Vector Diagonal::unwhiten(const Vector& v) const {
return emul(v, sigmas_);
}
Matrix Diagonal::Whiten(const Matrix& H) const {
return vector_scale(invsigmas_, H);
}
void Diagonal::WhitenInPlace(Matrix& H) const {
H = vector_scale(invsigmas_, H);
}
Vector Diagonal::sample() const {
Vector result(dim_);
for (int i = 0; i < dim_; i++) {
typedef boost::normal_distribution<double> Normal;
Normal dist(0.0, this->sigmas_(i));
boost::variate_generator<boost::minstd_rand&, Normal> norm(generator, dist);
result(i) = norm();
}
return result;
}
/* ************************************************************************* */
void Constrained::print(const std::string& name) const {
gtsam::print(sigmas_, "Constrained sigmas " + name);
}
Vector Constrained::whiten(const Vector& v) const {
// ediv_ does the right thing with the errors
return ediv_(v, sigmas_);
}
Matrix Constrained::Whiten(const Matrix& H) const {
throw logic_error("noiseModel::Constrained cannot Whiten");
}
void Constrained::WhitenInPlace(Matrix& H) const {
throw logic_error("noiseModel::Constrained cannot Whiten");
}
// Special version of QR for Constrained calls slower but smarter code
// that deals with possibly zero sigmas
// It is Gram-Schmidt orthogonalization rather than Householder
SharedDiagonal Diagonal::QR(Matrix& Ab) const {
// get size(A) and maxRank
size_t m = Ab.size1(), n = Ab.size2()-1;
size_t maxRank = min(m,n);
// create storage for [R d]
typedef boost::tuple<size_t, Vector, double> Triple;
list<Triple> Rd;
Vector pseudo(m); // allocate storage for pseudo-inverse
Vector weights = emul(invsigmas_,invsigmas_); // calculate weights once
// We loop over all columns, because the columns that can be eliminated
// are not necessarily contiguous. For each one, estimate the corresponding
// scalar variable x as d-rS, with S the separator (remaining columns).
// Then update A and b by substituting x with d-rS, zero-ing out x's column.
for (size_t j=0; j<n; ++j) {
// extract the first column of A
// ublas::matrix_column is slower ! TODO Really, why ????
// AGC: if you use column() you will automatically call ublas, use
// column_() to actually use the one in our library
Vector a(column(Ab, j));
// Calculate weighted pseudo-inverse and corresponding precision
double precision = weightedPseudoinverse(a, weights, pseudo);
// If precision is zero, no information on this column
// This is actually not limited to constraints, could happen in Gaussian::QR
// In that case, we're probably hosed. TODO: make sure Householder is rank-revealing
if (precision < 1e-8) continue;
// create solution [r d], rhs is automatically r(n)
Vector rd(n+1); // uninitialized !
rd(j)=1.0; // put 1 on diagonal
for (size_t j2=j+1; j2<n+1; ++j2) // and fill in remainder with dot-products
rd(j2) = inner_prod(pseudo, ublas::matrix_column<Matrix>(Ab, j2));
// construct solution (r, d, sigma)
Rd.push_back(boost::make_tuple(j, rd, precision));
// exit after rank exhausted
if (Rd.size()>=maxRank) break;
// update Ab, expensive, using outer product
updateAb(Ab, j, a, rd);
}
// Create storage for precisions
Vector precisions(Rd.size());
// Write back result in Ab, imperative as we are
// TODO: test that is correct if a column was skipped !!!!
size_t i = 0; // start with first row
bool mixed = false;
BOOST_FOREACH(const Triple& t, Rd) {
const size_t& j = t.get<0>();
const Vector& rd = t.get<1>();
precisions(i) = t.get<2>();
if (precisions(i)==inf) mixed = true;
for (size_t j2=0; j2<j; ++j2) Ab(i,j2) = 0.0; // fill in zeros below diagonal anway
for (size_t j2=j; j2<n+1; ++j2) // copy the j-the row TODO memcpy
Ab(i,j2) = rd(j2);
i+=1;
}
return mixed ? Constrained::MixedPrecisions(precisions) : Diagonal::Precisions(precisions);
}
/* ************************************************************************* */
Isotropic::shared_ptr Isotropic::Variance(size_t dim, double variance, bool smart) {
if (smart && fabs(variance-1.0)<1e-9) return Unit::Create(dim);
return shared_ptr(new Isotropic(dim, sqrt(variance)));
}
void Isotropic::print(const string& name) const {
cout << "Isotropic sigma " << name << " " << sigma_ << endl;
}
double Isotropic::Mahalanobis(const Vector& v) const {
double dot = inner_prod(v, v);
return dot * invsigma_ * invsigma_;
}
Vector Isotropic::whiten(const Vector& v) const {
return v * invsigma_;
}
Vector Isotropic::unwhiten(const Vector& v) const {
return v * sigma_;
}
Matrix Isotropic::Whiten(const Matrix& H) const {
return invsigma_ * H;
}
void Isotropic::WhitenInPlace(Matrix& H) const {
H *= invsigma_;
}
// faster version
Vector Isotropic::sample() const {
typedef boost::normal_distribution<double> Normal;
Normal dist(0.0, this->sigma_);
boost::variate_generator<boost::minstd_rand&, Normal> norm(generator, dist);
Vector result(dim_);
for (int i = 0; i < dim_; i++)
result(i) = norm();
return result;
}
/* ************************************************************************* */
void Unit::print(const std::string& name) const {
cout << "Unit (" << dim_ << ") " << name << endl;
}
/* ************************************************************************* */
}
} // gtsam