gtsam/gtsam_unstable/slam/GaussMarkov1stOrderFactor.h

141 lines
4.5 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GaussMarkov1stOrderFactor.h
* @author Vadim Indelman, Stephen Williams, Luca Carlone
* @date Jan 17, 2012
**/
#pragma once
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/Lie.h>
#include <ostream>
namespace gtsam {
/*
* - The 1st order GaussMarkov factor relates two keys of the same type. This relation is given via
* key_2 = exp(-1/tau*delta_t) * key1 + w_d
* where tau is the time constant and delta_t is the time difference between the two keys.
* w_d is the equivalent discrete noise, whose covariance is calculated from the continuous noise model and delta_t.
* - w_d is approximated as a Gaussian noise.
* - In the multi-dimensional case, tau is a vector, and the above equation is applied on each element
* in the state (represented by keys), using the appropriate time constant in the vector tau.
*/
/*
* A class for a measurement predicted by "GaussMarkov1stOrderFactor(config[key1],config[key2])"
* KEY1::Value is the Lie Group type
* T is the measurement type, by default the same
*/
template<class VALUE>
class GaussMarkov1stOrderFactor: public NoiseModelFactor2<VALUE, VALUE> {
private:
typedef GaussMarkov1stOrderFactor<VALUE> This;
typedef NoiseModelFactor2<VALUE, VALUE> Base;
double dt_;
Vector tau_;
public:
// shorthand for a smart pointer to a factor
typedef typename boost::shared_ptr<GaussMarkov1stOrderFactor> shared_ptr;
/** default constructor - only use for serialization */
GaussMarkov1stOrderFactor() {}
/** Constructor */
GaussMarkov1stOrderFactor(const Key& key1, const Key& key2, double delta_t, Vector tau,
const SharedGaussian& model) :
Base(calcDiscreteNoiseModel(model, delta_t), key1, key2), dt_(delta_t), tau_(tau) {
}
~GaussMarkov1stOrderFactor() override {}
/** implement functions needed for Testable */
/** print */
void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << s << "GaussMarkov1stOrderFactor("
<< keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << ")\n";
this->noiseModel_->print(" noise model");
}
/** equals */
bool equals(const NonlinearFactor& expected, double tol=1e-9) const override {
const This *e = dynamic_cast<const This*> (&expected);
return e != nullptr && Base::equals(*e, tol);
}
/** implement functions needed to derive from Factor */
/** vector of errors */
Vector evaluateError(const VALUE& p1, const VALUE& p2,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const override {
Vector v1( traits<VALUE>::Logmap(p1) );
Vector v2( traits<VALUE>::Logmap(p2) );
Vector alpha(tau_.size());
Vector alpha_v1(tau_.size());
for(int i=0; i<tau_.size(); i++){
alpha(i) = exp(- 1/tau_(i)*dt_ );
alpha_v1(i) = alpha(i) * v1(i);
}
Vector hx(v2 - alpha_v1);
if(H1) *H1 = -1 * alpha.asDiagonal();
if(H2) *H2 = Matrix::Identity(v2.size(),v2.size());
return hx;
}
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(dt_);
ar & BOOST_SERIALIZATION_NVP(tau_);
}
SharedGaussian calcDiscreteNoiseModel(const SharedGaussian& model, double delta_t){
/* Q_d (approx)= Q * delta_t */
/* In practice, square root of the information matrix is represented, so that:
* R_d (approx)= R / sqrt(delta_t)
* */
noiseModel::Gaussian::shared_ptr gaussian_model = boost::dynamic_pointer_cast<noiseModel::Gaussian>(model);
SharedGaussian model_d(noiseModel::Gaussian::SqrtInformation(gaussian_model->R()/sqrt(delta_t)));
return model_d;
}
}; // \class GaussMarkov1stOrderFactor
/// traits
template<class VALUE> struct traits<GaussMarkov1stOrderFactor<VALUE> > :
public Testable<GaussMarkov1stOrderFactor<VALUE> > {
};
} /// namespace gtsam