gtsam/gtsam_unstable/nonlinear/ConcurrentIncrementalSmooth...

177 lines
7.0 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ConcurrentIncrementalSmoother.h
* @brief An iSAM2-based Smoother that implements the
* Concurrent Filtering and Smoothing interface.
* @author Stephen Williams
*/
// \callgraph
#pragma once
#include <gtsam_unstable/nonlinear/ConcurrentFilteringAndSmoothing.h>
#include <gtsam/nonlinear/ISAM2.h>
namespace gtsam {
/**
* A Levenberg-Marquardt Batch Smoother that implements the Concurrent Filtering and Smoother interface.
*/
class GTSAM_UNSTABLE_EXPORT ConcurrentIncrementalSmoother : public virtual ConcurrentSmoother {
public:
typedef boost::shared_ptr<ConcurrentIncrementalSmoother> shared_ptr;
typedef ConcurrentSmoother Base; ///< typedef for base class
/** Meta information returned about the update */
struct Result {
size_t iterations; ///< The number of optimizer iterations performed
size_t nonlinearVariables; ///< The number of variables that can be relinearized
size_t linearVariables; ///< The number of variables that must keep a constant linearization point
double error; ///< The final factor graph error
/// Constructor
Result() : iterations(0), nonlinearVariables(0), linearVariables(0), error(0) {};
/// Getter methods
size_t getIterations() const { return iterations; }
size_t getNonlinearVariables() const { return nonlinearVariables; }
size_t getLinearVariables() const { return linearVariables; }
double getError() const { return error; }
};
/** Default constructor */
ConcurrentIncrementalSmoother(const ISAM2Params& parameters = ISAM2Params()) : isam2_(parameters) {};
/** Default destructor */
~ConcurrentIncrementalSmoother() override {};
/** Implement a GTSAM standard 'print' function */
void print(const std::string& s = "Concurrent Incremental Smoother:\n", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override;
/** Check if two Concurrent Smoothers are equal */
bool equals(const ConcurrentSmoother& rhs, double tol = 1e-9) const override;
/** Access the current set of factors */
const NonlinearFactorGraph& getFactors() const {
return isam2_.getFactorsUnsafe();
}
/** Access the current linearization point */
const Values& getLinearizationPoint() const {
return isam2_.getLinearizationPoint();
}
/** Access the current set of deltas to the linearization point */
const VectorValues& getDelta() const {
return isam2_.getDelta();
}
/** Compute the current best estimate of all variables and return a full Values structure.
* If only a single variable is needed, it may be faster to call calculateEstimate(const KEY&).
*/
Values calculateEstimate() const {
return isam2_.calculateEstimate();
}
/** Compute the current best estimate of a single variable. This is generally faster than
* calling the no-argument version of calculateEstimate if only specific variables are needed.
* @param key
* @return
*/
template<class VALUE>
VALUE calculateEstimate(Key key) const {
return isam2_.calculateEstimate<VALUE>(key);
}
/**
* Add new factors and variables to the smoother.
*
* Add new measurements, and optionally new variables, to the smoother.
* This runs a full step of the ISAM2 algorithm, relinearizing and updating
* the solution as needed, according to the wildfire and relinearize
* thresholds.
*
* @param newFactors The new factors to be added to the smoother
* @param newTheta Initialization points for new variables to be added to the smoother
* You must include here all new variables occuring in newFactors (which were not already
* in the smoother). There must not be any variables here that do not occur in newFactors,
* and additionally, variables that were already in the system must not be included here.
*/
Result update(const NonlinearFactorGraph& newFactors = NonlinearFactorGraph(), const Values& newTheta = Values(),
const boost::optional<FactorIndices>& removeFactorIndices = boost::none);
/**
* Perform any required operations before the synchronization process starts.
* Called by 'synchronize'
*/
void presync() override;
/**
* Populate the provided containers with factors that constitute the smoother branch summarization
* needed by the filter.
*
* @param summarizedFactors The summarized factors for the filter branch
*/
void getSummarizedFactors(NonlinearFactorGraph& summarizedFactors, Values& separatorValues) override;
/**
* Apply the new smoother factors sent by the filter, and the updated version of the filter
* branch summarized factors.
*
* @param smootherFactors A set of new factors added to the smoother from the filter
* @param smootherValues Linearization points for any new variables
* @param summarizedFactors An updated version of the filter branch summarized factors
* @param rootValues The linearization point of the root variables
*/
void synchronize(const NonlinearFactorGraph& smootherFactors, const Values& smootherValues,
const NonlinearFactorGraph& summarizedFactors, const Values& separatorValues) override;
/**
* Perform any required operations after the synchronization process finishes.
* Called by 'synchronize'
*/
void postsync() override;
protected:
ISAM2 isam2_; ///< iSAM2 inference engine
// Storage for information received from the filter during the last synchronization
NonlinearFactorGraph smootherFactors_; ///< New factors to be added to the smoother during the next update
Values smootherValues_; ///< New variables to be added to the smoother during the next update
NonlinearFactorGraph filterSummarizationFactors_; ///< New filter summarization factors to replace the existing filter summarization during the next update
Values separatorValues_; ///< The linearization points of the separator variables. These should not be changed during optimization.
FactorIndices filterSummarizationSlots_; ///< The slots in factor graph that correspond to the current filter summarization factors
bool synchronizationUpdatesAvailable_; ///< Flag indicating the currently stored synchronization updates have not been applied yet
// Storage for information to be sent to the filter
NonlinearFactorGraph smootherSummarization_; ///< A temporary holding place for calculated smoother summarization
private:
/** Calculate the smoother marginal factors on the separator variables */
void updateSmootherSummarization();
}; // ConcurrentBatchSmoother
/// Typedef for Matlab wrapping
typedef ConcurrentIncrementalSmoother::Result ConcurrentIncrementalSmootherResult;
/// traits
template<>
struct traits<ConcurrentIncrementalSmoother> : public Testable<ConcurrentIncrementalSmoother> {
};
} // \ namespace gtsam