87 lines
2.8 KiB
C++
87 lines
2.8 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file Pose2SLAMExample_advanced.cpp
|
|
* @brief Simple Pose2SLAM Example using
|
|
* pre-built pose2SLAM domain
|
|
* @author Chris Beall
|
|
*/
|
|
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <boost/shared_ptr.hpp>
|
|
|
|
// pull in the Pose2 SLAM domain with all typedefs and helper functions defined
|
|
#include <gtsam/slam/pose2SLAM.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
|
|
#include <gtsam/base/Vector.h>
|
|
#include <gtsam/base/Matrix.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace boost;
|
|
using namespace pose2SLAM;
|
|
|
|
int main(int argc, char** argv) {
|
|
/* 1. create graph container and add factors to it */
|
|
Graph graph;
|
|
|
|
/* 2.a add prior */
|
|
// gaussian for prior
|
|
SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
|
|
Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin
|
|
graph.addPrior(1, prior_measurement, prior_model); // add directly to graph
|
|
|
|
/* 2.b add odometry */
|
|
// general noisemodel for odometry
|
|
SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
|
|
|
|
/* Pose2 measurements take (x,y,theta), where theta is taken from the positive x-axis*/
|
|
Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
|
|
graph.addOdometry(1, 2, odom_measurement, odom_model);
|
|
graph.addOdometry(2, 3, odom_measurement, odom_model);
|
|
graph.print("full graph");
|
|
|
|
/* 3. Create the data structure to hold the initial estimate to the solution
|
|
* initialize to noisy points */
|
|
pose2SLAM::Values initial;
|
|
initial.insertPose(1, Pose2(0.5, 0.0, 0.2));
|
|
initial.insertPose(2, Pose2(2.3, 0.1,-0.2));
|
|
initial.insertPose(3, Pose2(4.1, 0.1, 0.1));
|
|
initial.print("initial estimate");
|
|
|
|
/* 4.2.1 Alternatively, you can go through the process step by step
|
|
* Choose an ordering */
|
|
Ordering ordering = *graph.orderingCOLAMD(initial);
|
|
|
|
/* 4.2.2 set up solver and optimize */
|
|
LevenbergMarquardtParams params;
|
|
params.absoluteErrorTol = 1e-15;
|
|
params.relativeErrorTol = 1e-15;
|
|
params.ordering = ordering;
|
|
LevenbergMarquardtOptimizer optimizer(graph, initial, params);
|
|
|
|
pose2SLAM::Values result = optimizer.optimize();
|
|
result.print("final result");
|
|
|
|
// /* Get covariances */
|
|
// Matrix covariance1 = optimizer_result.marginalCovariance(PoseKey(1));
|
|
// Matrix covariance2 = optimizer_result.marginalCovariance(PoseKey(2));
|
|
//
|
|
// print(covariance1, "Covariance1");
|
|
// print(covariance2, "Covariance2");
|
|
|
|
return 0;
|
|
}
|
|
|