498 lines
23 KiB
C++
498 lines
23 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file CombinedImuFactor.cpp
|
|
* @author Luca Carlone
|
|
* @author Stephen Williams
|
|
* @author Richard Roberts
|
|
* @author Vadim Indelman
|
|
* @author David Jensen
|
|
* @author Frank Dellaert
|
|
**/
|
|
|
|
#include <gtsam/navigation/CombinedImuFactor.h>
|
|
|
|
/* External or standard includes */
|
|
#include <ostream>
|
|
|
|
namespace gtsam {
|
|
|
|
using namespace std;
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Inner class CombinedPreintegratedMeasurements
|
|
//------------------------------------------------------------------------------
|
|
CombinedImuFactor::CombinedPreintegratedMeasurements::CombinedPreintegratedMeasurements(
|
|
const imuBias::ConstantBias& bias, const Matrix3& measuredAccCovariance,
|
|
const Matrix3& measuredOmegaCovariance, const Matrix3& integrationErrorCovariance,
|
|
const Matrix3& biasAccCovariance, const Matrix3& biasOmegaCovariance,
|
|
const Matrix& biasAccOmegaInit, const bool use2ndOrderIntegration) :
|
|
biasHat_(bias), deltaPij_(Vector3::Zero()), deltaVij_(Vector3::Zero()),
|
|
deltaRij_(Rot3()), deltaTij_(0.0),
|
|
delPdelBiasAcc_(Z_3x3), delPdelBiasOmega_(Z_3x3),
|
|
delVdelBiasAcc_(Z_3x3), delVdelBiasOmega_(Z_3x3),
|
|
delRdelBiasOmega_(Z_3x3), use2ndOrderIntegration_(use2ndOrderIntegration)
|
|
{
|
|
measurementCovariance_.setZero();
|
|
measurementCovariance_.block<3,3>(0,0) = integrationErrorCovariance;
|
|
measurementCovariance_.block<3,3>(3,3) = measuredAccCovariance;
|
|
measurementCovariance_.block<3,3>(6,6) = measuredOmegaCovariance;
|
|
measurementCovariance_.block<3,3>(9,9) = biasAccCovariance;
|
|
measurementCovariance_.block<3,3>(12,12) = biasOmegaCovariance;
|
|
measurementCovariance_.block<6,6>(15,15) = biasAccOmegaInit;
|
|
PreintMeasCov_.setZero();
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void CombinedImuFactor::CombinedPreintegratedMeasurements::print(const string& s) const{
|
|
cout << s << endl;
|
|
biasHat_.print(" biasHat");
|
|
cout << " deltaTij " << deltaTij_ << endl;
|
|
cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << endl;
|
|
cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << endl;
|
|
deltaRij_.print(" deltaRij ");
|
|
cout << " measurementCovariance [ " << measurementCovariance_ << " ]" << endl;
|
|
cout << " PreintMeasCov [ " << PreintMeasCov_ << " ]" << endl;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
bool CombinedImuFactor::CombinedPreintegratedMeasurements::equals(const CombinedPreintegratedMeasurements& expected, double tol) const{
|
|
return biasHat_.equals(expected.biasHat_, tol)
|
|
&& equal_with_abs_tol(measurementCovariance_, expected.measurementCovariance_, tol)
|
|
&& equal_with_abs_tol(deltaPij_, expected.deltaPij_, tol)
|
|
&& equal_with_abs_tol(deltaVij_, expected.deltaVij_, tol)
|
|
&& deltaRij_.equals(expected.deltaRij_, tol)
|
|
&& fabs(deltaTij_ - expected.deltaTij_) < tol
|
|
&& equal_with_abs_tol(delPdelBiasAcc_, expected.delPdelBiasAcc_, tol)
|
|
&& equal_with_abs_tol(delPdelBiasOmega_, expected.delPdelBiasOmega_, tol)
|
|
&& equal_with_abs_tol(delVdelBiasAcc_, expected.delVdelBiasAcc_, tol)
|
|
&& equal_with_abs_tol(delVdelBiasOmega_, expected.delVdelBiasOmega_, tol)
|
|
&& equal_with_abs_tol(delRdelBiasOmega_, expected.delRdelBiasOmega_, tol);
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void CombinedImuFactor::CombinedPreintegratedMeasurements::resetIntegration(){
|
|
deltaPij_ = Vector3::Zero();
|
|
deltaVij_ = Vector3::Zero();
|
|
deltaRij_ = Rot3();
|
|
deltaTij_ = 0.0;
|
|
delPdelBiasAcc_ = Z_3x3;
|
|
delPdelBiasOmega_ = Z_3x3;
|
|
delVdelBiasAcc_ = Z_3x3;
|
|
delVdelBiasOmega_ = Z_3x3;
|
|
delRdelBiasOmega_ = Z_3x3;
|
|
PreintMeasCov_.setZero();
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void CombinedImuFactor::CombinedPreintegratedMeasurements::integrateMeasurement(
|
|
const Vector3& measuredAcc, const Vector3& measuredOmega,
|
|
double deltaT, boost::optional<const Pose3&> body_P_sensor) {
|
|
|
|
// NOTE: order is important here because each update uses old values, e.g., velocity and position updates are based on previous rotation estimate.
|
|
// (i.e., we have to update jacobians and covariances before updating preintegrated measurements).
|
|
|
|
// First we compensate the measurements for the bias: since we have only an estimate of the bias, the covariance includes the corresponding uncertainty
|
|
Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
|
|
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
|
|
|
|
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
|
|
if(body_P_sensor){
|
|
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
|
|
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
|
|
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
|
|
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
|
|
// linear acceleration vector in the body frame
|
|
}
|
|
|
|
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
|
|
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
|
|
const Matrix3 Jr_theta_incr = Rot3::ExpmapDerivative(theta_incr); // Right jacobian computed at theta_incr
|
|
|
|
// Update Jacobians
|
|
/* ----------------------------------------------------------------------------------------------------------------------- */
|
|
if(!use2ndOrderIntegration_){
|
|
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
|
|
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
|
|
}else{
|
|
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
|
|
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
|
|
* skewSymmetric(biasHat_.correctAccelerometer(measuredAcc)) * deltaT*deltaT * delRdelBiasOmega_;
|
|
}
|
|
|
|
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
|
|
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
|
|
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
|
|
|
|
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
|
|
// can be seen as a prediction phase in an EKF framework. In this implementation, contrarily to [2] we
|
|
// consider the uncertainty of the bias selection and we keep correlation between biases and preintegrated measurements
|
|
/* ----------------------------------------------------------------------------------------------------------------------- */
|
|
const Vector3 theta_i = Rot3::Logmap(deltaRij_); // parametrization of so(3)
|
|
const Matrix3 Jr_theta_i = Rot3::ExpmapDerivative(theta_i);
|
|
|
|
Rot3 Rot_j = deltaRij_ * Rincr;
|
|
const Vector3 theta_j = Rot3::Logmap(Rot_j); // parametrization of so(3)
|
|
const Matrix3 Jrinv_theta_j = Rot3::LogmapDerivative(theta_j);
|
|
|
|
// Single Jacobians to propagate covariance
|
|
Matrix3 H_pos_pos = I_3x3;
|
|
Matrix3 H_pos_vel = I_3x3 * deltaT;
|
|
Matrix3 H_pos_angles = Z_3x3;
|
|
|
|
Matrix3 H_vel_pos = Z_3x3;
|
|
Matrix3 H_vel_vel = I_3x3;
|
|
Matrix3 H_vel_angles = - deltaRij_.matrix() * skewSymmetric(correctedAcc) * Jr_theta_i * deltaT;
|
|
// analytic expression corresponding to the following numerical derivative
|
|
// Matrix H_vel_angles = numericalDerivative11<LieVector, LieVector>(boost::bind(&PreIntegrateIMUObservations_delta_vel, correctedOmega, correctedAcc, deltaT, _1, deltaVij), theta_i);
|
|
Matrix3 H_vel_biasacc = - deltaRij_.matrix() * deltaT;
|
|
|
|
Matrix3 H_angles_pos = Z_3x3;
|
|
Matrix3 H_angles_vel = Z_3x3;
|
|
Matrix3 H_angles_angles = Jrinv_theta_j * Rincr.inverse().matrix() * Jr_theta_i;
|
|
Matrix3 H_angles_biasomega =- Jrinv_theta_j * Jr_theta_incr * deltaT;
|
|
// analytic expression corresponding to the following numerical derivative
|
|
// Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(boost::bind(&PreIntegrateIMUObservations_delta_angles, correctedOmega, deltaT, _1), thetaij);
|
|
|
|
// overall Jacobian wrt preintegrated measurements (df/dx)
|
|
Matrix F(15,15);
|
|
F << H_pos_pos, H_pos_vel, H_pos_angles, Z_3x3, Z_3x3,
|
|
H_vel_pos, H_vel_vel, H_vel_angles, H_vel_biasacc, Z_3x3,
|
|
H_angles_pos, H_angles_vel, H_angles_angles, Z_3x3, H_angles_biasomega,
|
|
Z_3x3, Z_3x3, Z_3x3, I_3x3, Z_3x3,
|
|
Z_3x3, Z_3x3, Z_3x3, Z_3x3, I_3x3;
|
|
|
|
// first order uncertainty propagation
|
|
// Optimized matrix multiplication (1/deltaT) * G * measurementCovariance * G.transpose()
|
|
|
|
Matrix G_measCov_Gt = Matrix::Zero(15,15);
|
|
// BLOCK DIAGONAL TERMS
|
|
G_measCov_Gt.block<3,3>(0,0) = deltaT * measurementCovariance_.block<3,3>(0,0);
|
|
|
|
G_measCov_Gt.block<3,3>(3,3) = (1/deltaT) * (H_vel_biasacc) *
|
|
(measurementCovariance_.block<3,3>(3,3) + measurementCovariance_.block<3,3>(15,15) ) *
|
|
(H_vel_biasacc.transpose());
|
|
|
|
G_measCov_Gt.block<3,3>(6,6) = (1/deltaT) * (H_angles_biasomega) *
|
|
(measurementCovariance_.block<3,3>(6,6) + measurementCovariance_.block<3,3>(18,18) ) *
|
|
(H_angles_biasomega.transpose());
|
|
|
|
G_measCov_Gt.block<3,3>(9,9) = deltaT * measurementCovariance_.block<3,3>(9,9);
|
|
|
|
G_measCov_Gt.block<3,3>(12,12) = deltaT * measurementCovariance_.block<3,3>(12,12);
|
|
|
|
// NEW OFF BLOCK DIAGONAL TERMS
|
|
Matrix3 block23 = H_vel_biasacc * measurementCovariance_.block<3,3>(18,15) * H_angles_biasomega.transpose();
|
|
G_measCov_Gt.block<3,3>(3,6) = block23;
|
|
G_measCov_Gt.block<3,3>(6,3) = block23.transpose();
|
|
|
|
PreintMeasCov_ = F * PreintMeasCov_ * F.transpose() + G_measCov_Gt;
|
|
|
|
// Update preintegrated measurements
|
|
/* ----------------------------------------------------------------------------------------------------------------------- */
|
|
if(!use2ndOrderIntegration_){
|
|
deltaPij_ += deltaVij_ * deltaT;
|
|
}else{
|
|
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * biasHat_.correctAccelerometer(measuredAcc) * deltaT*deltaT;
|
|
}
|
|
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
|
|
deltaRij_ = deltaRij_ * Rincr;
|
|
deltaTij_ += deltaT;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
// CombinedImuFactor methods
|
|
//------------------------------------------------------------------------------
|
|
CombinedImuFactor::CombinedImuFactor() :
|
|
preintegratedMeasurements_(imuBias::ConstantBias(), Z_3x3, Z_3x3, Z_3x3, Z_3x3, Z_3x3, Matrix::Zero(6,6)) {}
|
|
|
|
//------------------------------------------------------------------------------
|
|
CombinedImuFactor::CombinedImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias_i, Key bias_j,
|
|
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
|
|
const Vector3& gravity, const Vector3& omegaCoriolis,
|
|
boost::optional<const Pose3&> body_P_sensor, const bool use2ndOrderCoriolis) :
|
|
Base(noiseModel::Gaussian::Covariance(preintegratedMeasurements.PreintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias_i, bias_j),
|
|
preintegratedMeasurements_(preintegratedMeasurements),
|
|
gravity_(gravity),
|
|
omegaCoriolis_(omegaCoriolis),
|
|
body_P_sensor_(body_P_sensor),
|
|
use2ndOrderCoriolis_(use2ndOrderCoriolis){
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
gtsam::NonlinearFactor::shared_ptr CombinedImuFactor::clone() const {
|
|
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
|
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
void CombinedImuFactor::print(const string& s, const KeyFormatter& keyFormatter) const {
|
|
cout << s << "CombinedImuFactor("
|
|
<< keyFormatter(this->key1()) << ","
|
|
<< keyFormatter(this->key2()) << ","
|
|
<< keyFormatter(this->key3()) << ","
|
|
<< keyFormatter(this->key4()) << ","
|
|
<< keyFormatter(this->key5()) << ","
|
|
<< keyFormatter(this->key6()) << ")\n";
|
|
preintegratedMeasurements_.print(" preintegrated measurements:");
|
|
cout << " gravity: [ " << gravity_.transpose() << " ]" << endl;
|
|
cout << " omegaCoriolis: [ " << omegaCoriolis_.transpose() << " ]" << endl;
|
|
this->noiseModel_->print(" noise model: ");
|
|
if(this->body_P_sensor_)
|
|
this->body_P_sensor_->print(" sensor pose in body frame: ");
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
bool CombinedImuFactor::equals(const NonlinearFactor& expected, double tol) const {
|
|
const This *e = dynamic_cast<const This*> (&expected);
|
|
return e != NULL && Base::equals(*e, tol)
|
|
&& preintegratedMeasurements_.equals(e->preintegratedMeasurements_, tol)
|
|
&& equal_with_abs_tol(gravity_, e->gravity_, tol)
|
|
&& equal_with_abs_tol(omegaCoriolis_, e->omegaCoriolis_, tol)
|
|
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
Vector CombinedImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j,
|
|
const imuBias::ConstantBias& bias_i, const imuBias::ConstantBias& bias_j,
|
|
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2,
|
|
boost::optional<Matrix&> H3, boost::optional<Matrix&> H4,
|
|
boost::optional<Matrix&> H5, boost::optional<Matrix&> H6) const {
|
|
|
|
const double& deltaTij = preintegratedMeasurements_.deltaTij_;
|
|
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements_.biasHat_.accelerometer();
|
|
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements_.biasHat_.gyroscope();
|
|
|
|
// we give some shorter name to rotations and translations
|
|
const Rot3 Rot_i = pose_i.rotation();
|
|
const Rot3 Rot_j = pose_j.rotation();
|
|
const Vector3 pos_i = pose_i.translation().vector();
|
|
const Vector3 pos_j = pose_j.translation().vector();
|
|
|
|
// We compute factor's Jacobians, according to [3]
|
|
/* ---------------------------------------------------------------------------------------------------- */
|
|
const Rot3 deltaRij_biascorrected = preintegratedMeasurements_.deltaRij_.retract(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
|
|
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
|
|
|
|
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
|
|
|
|
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
|
|
Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij; // Coriolis term
|
|
|
|
const Rot3 deltaRij_biascorrected_corioliscorrected =
|
|
Rot3::Expmap( theta_biascorrected_corioliscorrected );
|
|
|
|
const Rot3 fRhat = deltaRij_biascorrected_corioliscorrected.between(Rot_i.between(Rot_j));
|
|
|
|
const Matrix3 Jr_theta_bcc = Rot3::ExpmapDerivative(theta_biascorrected_corioliscorrected);
|
|
|
|
const Matrix3 Jtheta = -Jr_theta_bcc * skewSymmetric(Rot_i.inverse().matrix() * omegaCoriolis_ * deltaTij);
|
|
|
|
const Matrix3 Jrinv_fRhat = Rot3::LogmapDerivative(Rot3::Logmap(fRhat));
|
|
|
|
if(H1) {
|
|
H1->resize(15,6);
|
|
|
|
Matrix3 dfPdPi;
|
|
Matrix3 dfVdPi;
|
|
if(use2ndOrderCoriolis_){
|
|
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
|
|
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
|
|
}
|
|
else{
|
|
dfPdPi = - Rot_i.matrix();
|
|
dfVdPi = Z_3x3;
|
|
}
|
|
|
|
(*H1) <<
|
|
// dfP/dRi
|
|
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij_
|
|
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr),
|
|
// dfP/dPi
|
|
dfPdPi,
|
|
// dfV/dRi
|
|
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij_
|
|
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr),
|
|
// dfV/dPi
|
|
dfVdPi,
|
|
// dfR/dRi
|
|
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
|
|
// dfR/dPi
|
|
Z_3x3,
|
|
//dBiasAcc/dPi
|
|
Z_3x3, Z_3x3,
|
|
//dBiasOmega/dPi
|
|
Z_3x3, Z_3x3;
|
|
}
|
|
|
|
if(H2) {
|
|
H2->resize(15,3);
|
|
(*H2) <<
|
|
// dfP/dVi
|
|
- I_3x3 * deltaTij
|
|
+ skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
|
|
// dfV/dVi
|
|
- I_3x3
|
|
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
|
|
// dfR/dVi
|
|
Z_3x3,
|
|
//dBiasAcc/dVi
|
|
Z_3x3,
|
|
//dBiasOmega/dVi
|
|
Z_3x3;
|
|
}
|
|
|
|
if(H3) {
|
|
H3->resize(15,6);
|
|
(*H3) <<
|
|
// dfP/dPosej
|
|
Z_3x3, Rot_j.matrix(),
|
|
// dfV/dPosej
|
|
Matrix::Zero(3,6),
|
|
// dfR/dPosej
|
|
Jrinv_fRhat * ( I_3x3 ), Z_3x3,
|
|
//dBiasAcc/dPosej
|
|
Z_3x3, Z_3x3,
|
|
//dBiasOmega/dPosej
|
|
Z_3x3, Z_3x3;
|
|
}
|
|
|
|
if(H4) {
|
|
H4->resize(15,3);
|
|
(*H4) <<
|
|
// dfP/dVj
|
|
Z_3x3,
|
|
// dfV/dVj
|
|
I_3x3,
|
|
// dfR/dVj
|
|
Z_3x3,
|
|
//dBiasAcc/dVj
|
|
Z_3x3,
|
|
//dBiasOmega/dVj
|
|
Z_3x3;
|
|
}
|
|
|
|
if(H5) {
|
|
const Matrix3 Jrinv_theta_bc = Rot3::LogmapDerivative(theta_biascorrected);
|
|
const Matrix3 Jr_JbiasOmegaIncr = Rot3::ExpmapDerivative(preintegratedMeasurements_.delRdelBiasOmega_ * biasOmegaIncr);
|
|
const Matrix3 JbiasOmega = Jr_theta_bcc * Jrinv_theta_bc * Jr_JbiasOmegaIncr * preintegratedMeasurements_.delRdelBiasOmega_;
|
|
|
|
H5->resize(15,6);
|
|
(*H5) <<
|
|
// dfP/dBias_i
|
|
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasAcc_,
|
|
- Rot_i.matrix() * preintegratedMeasurements_.delPdelBiasOmega_,
|
|
// dfV/dBias_i
|
|
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasAcc_,
|
|
- Rot_i.matrix() * preintegratedMeasurements_.delVdelBiasOmega_,
|
|
// dfR/dBias_i
|
|
Matrix::Zero(3,3),
|
|
Jrinv_fRhat * ( - fRhat.inverse().matrix() * JbiasOmega),
|
|
//dBiasAcc/dBias_i
|
|
-I_3x3, Z_3x3,
|
|
//dBiasOmega/dBias_i
|
|
Z_3x3, -I_3x3;
|
|
}
|
|
|
|
if(H6) {
|
|
H6->resize(15,6);
|
|
(*H6) <<
|
|
// dfP/dBias_j
|
|
Z_3x3, Z_3x3,
|
|
// dfV/dBias_j
|
|
Z_3x3, Z_3x3,
|
|
// dfR/dBias_j
|
|
Z_3x3, Z_3x3,
|
|
//dBiasAcc/dBias_j
|
|
I_3x3, Z_3x3,
|
|
//dBiasOmega/dBias_j
|
|
Z_3x3, I_3x3;
|
|
}
|
|
|
|
// Evaluate residual error, according to [3]
|
|
/* ---------------------------------------------------------------------------------------------------- */
|
|
const Vector3 fp =
|
|
pos_j - pos_i
|
|
- Rot_i.matrix() * (preintegratedMeasurements_.deltaPij_
|
|
+ preintegratedMeasurements_.delPdelBiasAcc_ * biasAccIncr
|
|
+ preintegratedMeasurements_.delPdelBiasOmega_ * biasOmegaIncr)
|
|
- vel_i * deltaTij
|
|
+ skewSymmetric(omegaCoriolis_) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
|
|
- 0.5 * gravity_ * deltaTij*deltaTij;
|
|
|
|
const Vector3 fv =
|
|
vel_j - vel_i - Rot_i.matrix() * (preintegratedMeasurements_.deltaVij_
|
|
+ preintegratedMeasurements_.delVdelBiasAcc_ * biasAccIncr
|
|
+ preintegratedMeasurements_.delVdelBiasOmega_ * biasOmegaIncr)
|
|
+ 2 * skewSymmetric(omegaCoriolis_) * vel_i * deltaTij // Coriolis term
|
|
- gravity_ * deltaTij;
|
|
|
|
const Vector3 fR = Rot3::Logmap(fRhat);
|
|
|
|
const Vector3 fbiasAcc = bias_j.accelerometer() - bias_i.accelerometer();
|
|
|
|
const Vector3 fbiasOmega = bias_j.gyroscope() - bias_i.gyroscope();
|
|
|
|
Vector r(15); r << fp, fv, fR, fbiasAcc, fbiasOmega; // vector of size 15
|
|
|
|
return r;
|
|
}
|
|
|
|
//------------------------------------------------------------------------------
|
|
PoseVelocityBias CombinedImuFactor::Predict(const Pose3& pose_i, const Vector3& vel_i,
|
|
const imuBias::ConstantBias& bias_i,
|
|
const CombinedPreintegratedMeasurements& preintegratedMeasurements,
|
|
const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis){
|
|
|
|
const double& deltaTij = preintegratedMeasurements.deltaTij_;
|
|
const Vector3 biasAccIncr = bias_i.accelerometer() - preintegratedMeasurements.biasHat_.accelerometer();
|
|
const Vector3 biasOmegaIncr = bias_i.gyroscope() - preintegratedMeasurements.biasHat_.gyroscope();
|
|
|
|
const Rot3 Rot_i = pose_i.rotation();
|
|
const Vector3 pos_i = pose_i.translation().vector();
|
|
|
|
// Predict state at time j
|
|
/* ---------------------------------------------------------------------------------------------------- */
|
|
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij_
|
|
+ preintegratedMeasurements.delPdelBiasAcc_ * biasAccIncr
|
|
+ preintegratedMeasurements.delPdelBiasOmega_ * biasOmegaIncr)
|
|
+ vel_i * deltaTij
|
|
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
|
|
+ 0.5 * gravity * deltaTij*deltaTij;
|
|
|
|
Vector3 vel_j = Vector3(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij_
|
|
+ preintegratedMeasurements.delVdelBiasAcc_ * biasAccIncr
|
|
+ preintegratedMeasurements.delVdelBiasOmega_ * biasOmegaIncr)
|
|
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
|
|
+ gravity * deltaTij);
|
|
|
|
if(use2ndOrderCoriolis){
|
|
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
|
|
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
|
|
}
|
|
|
|
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij_.retract(preintegratedMeasurements.delRdelBiasOmega_ * biasOmegaIncr, Rot3::EXPMAP);
|
|
// deltaRij_biascorrected is expmap(deltaRij) * expmap(delRdelBiasOmega * biasOmegaIncr)
|
|
Vector3 theta_biascorrected = Rot3::Logmap(deltaRij_biascorrected);
|
|
Vector3 theta_biascorrected_corioliscorrected = theta_biascorrected -
|
|
Rot_i.inverse().matrix() * omegaCoriolis * deltaTij; // Coriolis term
|
|
const Rot3 deltaRij_biascorrected_corioliscorrected =
|
|
Rot3::Expmap( theta_biascorrected_corioliscorrected );
|
|
const Rot3 Rot_j = Rot_i.compose( deltaRij_biascorrected_corioliscorrected );
|
|
|
|
Pose3 pose_j = Pose3( Rot_j, Point3(pos_j) );
|
|
|
|
return PoseVelocityBias(pose_j, vel_j, bias_i);
|
|
}
|
|
|
|
} /// namespace gtsam
|