469 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			469 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 *  @file   testGaussianFactorGraphB.cpp
 | 
						|
 *  @brief  Unit tests for Linear Factor Graph
 | 
						|
 *  @author Christian Potthast
 | 
						|
 **/
 | 
						|
 | 
						|
#include <tests/smallExample.h>
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/linear/GaussianBayesNet.h>
 | 
						|
#include <gtsam/linear/GaussianBayesTree.h>
 | 
						|
#include <gtsam/linear/GaussianFactorGraph.h>
 | 
						|
#include <gtsam/base/numericalDerivative.h>
 | 
						|
#include <gtsam/base/Matrix.h>
 | 
						|
#include <gtsam/base/Testable.h>
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <boost/tuple/tuple.hpp>
 | 
						|
#include <boost/assign/std/list.hpp> // for operator +=
 | 
						|
#include <boost/assign/std/set.hpp> // for operator +=
 | 
						|
#include <boost/assign/std/vector.hpp> // for operator +=
 | 
						|
using namespace boost::assign;
 | 
						|
#include <boost/range/adaptor/map.hpp>
 | 
						|
namespace br { using namespace boost::range; using namespace boost::adaptors; }
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace example;
 | 
						|
 | 
						|
double tol=1e-5;
 | 
						|
 | 
						|
using symbol_shorthand::X;
 | 
						|
using symbol_shorthand::L;
 | 
						|
 | 
						|
static auto kUnit2 = noiseModel::Unit::Create(2);
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, equals ) {
 | 
						|
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
  GaussianFactorGraph fg2 = createGaussianFactorGraph();
 | 
						|
  EXPECT(fg.equals(fg2));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, error ) {
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
  VectorValues cfg = createZeroDelta();
 | 
						|
 | 
						|
  // note the error is the same as in testNonlinearFactorGraph as a
 | 
						|
  // zero delta config in the linear graph is equivalent to noisy in
 | 
						|
  // non-linear, which is really linear under the hood
 | 
						|
  double actual = fg.error(cfg);
 | 
						|
  DOUBLES_EQUAL( 5.625, actual, 1e-9 );
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, eliminateOne_x1) {
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
 | 
						|
  GaussianConditional::shared_ptr conditional;
 | 
						|
  auto result = fg.eliminatePartialSequential(Ordering(list_of(X(1))));
 | 
						|
  conditional = result.first->front();
 | 
						|
 | 
						|
  // create expected Conditional Gaussian
 | 
						|
  Matrix I = 15 * I_2x2, R11 = I, S12 = -0.111111 * I, S13 = -0.444444 * I;
 | 
						|
  Vector d = Vector2(-0.133333, -0.0222222);
 | 
						|
  GaussianConditional expected(X(1), 15 * d, R11, L(1), S12, X(2), S13);
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, *conditional, tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, eliminateOne_x2) {
 | 
						|
  Ordering ordering;
 | 
						|
  ordering += X(2), L(1), X(1);
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
  auto actual = EliminateQR(fg, Ordering(list_of(X(2)))).first;
 | 
						|
 | 
						|
  // create expected Conditional Gaussian
 | 
						|
  double sigma = 0.0894427;
 | 
						|
  Matrix I = I_2x2 / sigma, R11 = I, S12 = -0.2 * I, S13 = -0.8 * I;
 | 
						|
  Vector d = Vector2(0.2, -0.14) / sigma;
 | 
						|
  GaussianConditional expected(X(2), d, R11, L(1), S12, X(1), S13, kUnit2);
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, *actual, tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, eliminateOne_l1) {
 | 
						|
  Ordering ordering;
 | 
						|
  ordering += L(1), X(1), X(2);
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
  auto actual = EliminateQR(fg, Ordering(list_of(L(1)))).first;
 | 
						|
 | 
						|
  // create expected Conditional Gaussian
 | 
						|
  double sigma = sqrt(2.0) / 10.;
 | 
						|
  Matrix I = I_2x2 / sigma, R11 = I, S12 = -0.5 * I, S13 = -0.5 * I;
 | 
						|
  Vector d = Vector2(-0.1, 0.25) / sigma;
 | 
						|
  GaussianConditional expected(L(1), d, R11, X(1), S12, X(2), S13, kUnit2);
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, *actual, tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, eliminateOne_x1_fast) {
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
  GaussianConditional::shared_ptr conditional;
 | 
						|
  JacobianFactor::shared_ptr remaining;
 | 
						|
  boost::tie(conditional, remaining) = EliminateQR(fg, Ordering(list_of(X(1))));
 | 
						|
 | 
						|
  // create expected Conditional Gaussian
 | 
						|
  Matrix I = 15 * I_2x2, R11 = I, S12 = -0.111111 * I, S13 = -0.444444 * I;
 | 
						|
  Vector d = Vector2(-0.133333, -0.0222222);
 | 
						|
  GaussianConditional expected(X(1), 15 * d, R11, L(1), S12, X(2), S13, kUnit2);
 | 
						|
 | 
						|
  // Create expected remaining new factor
 | 
						|
  JacobianFactor expectedFactor(
 | 
						|
      L(1), (Matrix(4, 2) << 6.87184, 0, 0, 6.87184, 0, 0, 0, 0).finished(),
 | 
						|
      X(2),
 | 
						|
      (Matrix(4, 2) << -5.25494, 0, 0, -5.25494, -7.27607, 0, 0, -7.27607)
 | 
						|
          .finished(),
 | 
						|
      (Vector(4) << -1.21268, 1.73817, -0.727607, 1.45521).finished(),
 | 
						|
      noiseModel::Unit::Create(4));
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, *conditional, tol));
 | 
						|
  EXPECT(assert_equal(expectedFactor, *remaining, tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, eliminateOne_x2_fast) {
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
  auto actual = EliminateQR(fg, Ordering(list_of(X(2)))).first;
 | 
						|
 | 
						|
  // create expected Conditional Gaussian
 | 
						|
  double sigma = 0.0894427;
 | 
						|
  Matrix I = I_2x2 / sigma, R11 = -I, S12 = 0.2 * I, S13 = 0.8 * I;
 | 
						|
  Vector d = Vector2(-0.2, 0.14) / sigma;
 | 
						|
  GaussianConditional expected(X(2), d, R11, L(1), S12, X(1), S13, kUnit2);
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, *actual, tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, eliminateOne_l1_fast) {
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
  auto actual = EliminateQR(fg, Ordering(list_of(L(1)))).first;
 | 
						|
 | 
						|
  // create expected Conditional Gaussian
 | 
						|
  double sigma = sqrt(2.0) / 10.;
 | 
						|
  Matrix I = I_2x2 / sigma, R11 = -I, S12 = 0.5 * I, S13 = 0.5 * I;
 | 
						|
  Vector d = Vector2(0.1, -0.25) / sigma;
 | 
						|
  GaussianConditional expected(L(1), d, R11, X(1), S12, X(2), S13, kUnit2);
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, *actual, tol));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, copying) {
 | 
						|
  // Create a graph
 | 
						|
  GaussianFactorGraph actual = createGaussianFactorGraph();
 | 
						|
 | 
						|
  // Copy the graph !
 | 
						|
  GaussianFactorGraph copy = actual;
 | 
						|
 | 
						|
  // now eliminate the copy
 | 
						|
  GaussianBayesNet actual1 = *copy.eliminateSequential();
 | 
						|
 | 
						|
  // Create the same graph, but not by copying
 | 
						|
  GaussianFactorGraph expected = createGaussianFactorGraph();
 | 
						|
 | 
						|
  // and check that original is still the same graph
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, CONSTRUCTOR_GaussianBayesNet) {
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
 | 
						|
  // render with a given ordering
 | 
						|
  GaussianBayesNet CBN = *fg.eliminateSequential();
 | 
						|
 | 
						|
  // True GaussianFactorGraph
 | 
						|
  GaussianFactorGraph fg2(CBN);
 | 
						|
  GaussianBayesNet CBN2 = *fg2.eliminateSequential();
 | 
						|
  EXPECT(assert_equal(CBN, CBN2));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, optimize_Cholesky) {
 | 
						|
  // create a graph
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
 | 
						|
  // optimize the graph
 | 
						|
  VectorValues actual = fg.optimize(EliminateCholesky);
 | 
						|
 | 
						|
  // verify
 | 
						|
  VectorValues expected = createCorrectDelta();
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, optimize_QR )
 | 
						|
{
 | 
						|
  // create a graph
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
 | 
						|
  // optimize the graph
 | 
						|
  VectorValues actual = fg.optimize(EliminateQR);
 | 
						|
 | 
						|
  // verify
 | 
						|
  VectorValues expected = createCorrectDelta();
 | 
						|
  EXPECT(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, combine) {
 | 
						|
  // create a test graph
 | 
						|
  GaussianFactorGraph fg1 = createGaussianFactorGraph();
 | 
						|
 | 
						|
  // create another factor graph
 | 
						|
  GaussianFactorGraph fg2 = createGaussianFactorGraph();
 | 
						|
 | 
						|
  // get sizes
 | 
						|
  size_t size1 = fg1.size();
 | 
						|
  size_t size2 = fg2.size();
 | 
						|
 | 
						|
  // combine them
 | 
						|
  fg1.push_back(fg2);
 | 
						|
 | 
						|
  EXPECT(size1 + size2 == fg1.size());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// print a vector of ints if needed for debugging
 | 
						|
void print(vector<int> v) {
 | 
						|
  for (size_t k = 0; k < v.size(); k++) cout << v[k] << " ";
 | 
						|
  cout << endl;
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, createSmoother) {
 | 
						|
  GaussianFactorGraph fg1 = createSmoother(2);
 | 
						|
  LONGS_EQUAL(3, fg1.size());
 | 
						|
  GaussianFactorGraph fg2 = createSmoother(3);
 | 
						|
  LONGS_EQUAL(5, fg2.size());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
double error(const VectorValues& x) {
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
  return fg.error(x);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, multiplication) {
 | 
						|
  GaussianFactorGraph A = createGaussianFactorGraph();
 | 
						|
  VectorValues x = createCorrectDelta();
 | 
						|
  Errors actual = A * x;
 | 
						|
  Errors expected;
 | 
						|
  expected += Vector2(-1.0, -1.0);
 | 
						|
  expected += Vector2(2.0, -1.0);
 | 
						|
  expected += Vector2(0.0, 1.0);
 | 
						|
  expected += Vector2(-1.0, 1.5);
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Extra test on elimination prompted by Michael's email to Frank 1/4/2010
 | 
						|
TEST(GaussianFactorGraph, elimination) {
 | 
						|
  // Create Gaussian Factor Graph
 | 
						|
  GaussianFactorGraph fg;
 | 
						|
  Matrix Ap = I_1x1, An = I_1x1 * -1;
 | 
						|
  Vector b = (Vector(1) << 0.0).finished();
 | 
						|
  SharedDiagonal sigma = noiseModel::Isotropic::Sigma(1, 2.0);
 | 
						|
  fg += JacobianFactor(X(1), An, X(2), Ap, b, sigma);
 | 
						|
  fg += JacobianFactor(X(1), Ap, b, sigma);
 | 
						|
  fg += JacobianFactor(X(2), Ap, b, sigma);
 | 
						|
 | 
						|
  // Eliminate
 | 
						|
  Ordering ordering;
 | 
						|
  ordering += X(1), X(2);
 | 
						|
  GaussianBayesNet bayesNet = *fg.eliminateSequential();
 | 
						|
 | 
						|
  // Check matrix
 | 
						|
  Matrix R;
 | 
						|
  Vector d;
 | 
						|
  boost::tie(R, d) = bayesNet.matrix();
 | 
						|
  Matrix expected =
 | 
						|
      (Matrix(2, 2) << 0.707107, -0.353553, 0.0, 0.612372).finished();
 | 
						|
  Matrix expected2 =
 | 
						|
      (Matrix(2, 2) << 0.707107, -0.353553, 0.0, -0.612372).finished();
 | 
						|
  EXPECT(assert_equal(expected, R, 1e-6));
 | 
						|
  EXPECT(equal_with_abs_tol(expected, R, 1e-6) ||
 | 
						|
         equal_with_abs_tol(expected2, R, 1e-6));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
// Tests ported from ConstrainedGaussianFactorGraph
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, constrained_simple) {
 | 
						|
  // get a graph with a constraint in it
 | 
						|
  GaussianFactorGraph fg = createSimpleConstraintGraph();
 | 
						|
  EXPECT(hasConstraints(fg));
 | 
						|
 | 
						|
  // eliminate and solve
 | 
						|
  VectorValues actual = fg.eliminateSequential()->optimize();
 | 
						|
 | 
						|
  // verify
 | 
						|
  VectorValues expected = createSimpleConstraintValues();
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, constrained_single) {
 | 
						|
  // get a graph with a constraint in it
 | 
						|
  GaussianFactorGraph fg = createSingleConstraintGraph();
 | 
						|
  EXPECT(hasConstraints(fg));
 | 
						|
 | 
						|
  // eliminate and solve
 | 
						|
  VectorValues actual = fg.eliminateSequential()->optimize();
 | 
						|
 | 
						|
  // verify
 | 
						|
  VectorValues expected = createSingleConstraintValues();
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, constrained_multi1) {
 | 
						|
  // get a graph with a constraint in it
 | 
						|
  GaussianFactorGraph fg = createMultiConstraintGraph();
 | 
						|
  EXPECT(hasConstraints(fg));
 | 
						|
 | 
						|
  // eliminate and solve
 | 
						|
  VectorValues actual = fg.eliminateSequential()->optimize();
 | 
						|
 | 
						|
  // verify
 | 
						|
  VectorValues expected = createMultiConstraintValues();
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
 | 
						|
static SharedDiagonal model = noiseModel::Isotropic::Sigma(2,1);
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, replace)
 | 
						|
{
 | 
						|
  Ordering ord; ord += X(1),X(2),X(3),X(4),X(5),X(6);
 | 
						|
  SharedDiagonal noise(noiseModel::Isotropic::Sigma(3, 1.0));
 | 
						|
 | 
						|
  GaussianFactorGraph::sharedFactor f1(new JacobianFactor(
 | 
						|
      X(1), I_3x3, X(2), I_3x3, Z_3x1, noise));
 | 
						|
  GaussianFactorGraph::sharedFactor f2(new JacobianFactor(
 | 
						|
      X(2), I_3x3, X(3), I_3x3, Z_3x1, noise));
 | 
						|
  GaussianFactorGraph::sharedFactor f3(new JacobianFactor(
 | 
						|
      X(3), I_3x3, X(4), I_3x3, Z_3x1, noise));
 | 
						|
  GaussianFactorGraph::sharedFactor f4(new JacobianFactor(
 | 
						|
      X(5), I_3x3, X(6), I_3x3, Z_3x1, noise));
 | 
						|
 | 
						|
  GaussianFactorGraph actual;
 | 
						|
  actual.push_back(f1);
 | 
						|
  actual.push_back(f2);
 | 
						|
  actual.push_back(f3);
 | 
						|
  actual.replace(0, f4);
 | 
						|
 | 
						|
  GaussianFactorGraph expected;
 | 
						|
  expected.push_back(f4);
 | 
						|
  expected.push_back(f2);
 | 
						|
  expected.push_back(f3);
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianFactorGraph, hasConstraints)
 | 
						|
{
 | 
						|
  FactorGraph<GaussianFactor> fgc1 = createMultiConstraintGraph();
 | 
						|
  EXPECT(hasConstraints(fgc1));
 | 
						|
 | 
						|
  FactorGraph<GaussianFactor> fgc2 = createSimpleConstraintGraph() ;
 | 
						|
  EXPECT(hasConstraints(fgc2));
 | 
						|
 | 
						|
  GaussianFactorGraph fg = createGaussianFactorGraph();
 | 
						|
  EXPECT(!hasConstraints(fg));
 | 
						|
}
 | 
						|
 | 
						|
#include <gtsam/slam/ProjectionFactor.h>
 | 
						|
#include <gtsam/geometry/Pose3.h>
 | 
						|
#include <gtsam/slam/PriorFactor.h>
 | 
						|
#include <gtsam/sam/RangeFactor.h>
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianFactorGraph, conditional_sigma_failure) {
 | 
						|
  // This system derives from a failure case in DDF in which a Bayes Tree
 | 
						|
  // has non-unit sigmas for conditionals in the Bayes Tree, which
 | 
						|
  // should never happen by construction
 | 
						|
 | 
						|
  // Reason for the failure: using Vector_() is dangerous as having a non-float gets set to zero, resulting in constraints
 | 
						|
  gtsam::Key xC1 = 0, l32 = 1, l41 = 2;
 | 
						|
 | 
						|
  // noisemodels at nonlinear level
 | 
						|
  gtsam::SharedNoiseModel priorModel = noiseModel::Diagonal::Sigmas((Vector(6) << 0.05, 0.05, 3.0, 0.2, 0.2, 0.2).finished());
 | 
						|
  gtsam::SharedNoiseModel measModel = kUnit2;
 | 
						|
  gtsam::SharedNoiseModel elevationModel = noiseModel::Isotropic::Sigma(1, 3.0);
 | 
						|
 | 
						|
  double fov = 60; // degrees
 | 
						|
  int imgW = 640; // pixels
 | 
						|
  int imgH = 480; // pixels
 | 
						|
  gtsam::Cal3_S2::shared_ptr K(new gtsam::Cal3_S2(fov, imgW, imgH));
 | 
						|
 | 
						|
  typedef GenericProjectionFactor<Pose3, Point3> ProjectionFactor;
 | 
						|
 | 
						|
  double relElevation = 6;
 | 
						|
 | 
						|
  Values initValues;
 | 
						|
  initValues.insert(xC1,
 | 
						|
      Pose3(Rot3(
 | 
						|
          -1.,           0.0,  1.2246468e-16,
 | 
						|
          0.0,             1.,           0.0,
 | 
						|
          -1.2246468e-16,           0.0,            -1.),
 | 
						|
          Point3(0.511832102, 8.42819594, 5.76841725)));
 | 
						|
  initValues.insert(l32,  Point3(0.364081507, 6.89766221, -0.231582751) );
 | 
						|
  initValues.insert(l41,  Point3(1.61051523, 6.7373052, -0.231582751)   );
 | 
						|
 | 
						|
  NonlinearFactorGraph factors;
 | 
						|
  factors += PriorFactor<Pose3>(xC1,
 | 
						|
      Pose3(Rot3(
 | 
						|
          -1.,           0.0,  1.2246468e-16,
 | 
						|
          0.0,             1.,           0.0,
 | 
						|
          -1.2246468e-16,           0.0,            -1),
 | 
						|
          Point3(0.511832102, 8.42819594, 5.76841725)), priorModel);
 | 
						|
  factors += ProjectionFactor(Point2(333.648615, 98.61535), measModel, xC1, l32, K);
 | 
						|
  factors += ProjectionFactor(Point2(218.508, 83.8022039), measModel, xC1, l41, K);
 | 
						|
  factors += RangeFactor<Pose3,Point3>(xC1, l32, relElevation, elevationModel);
 | 
						|
  factors += RangeFactor<Pose3,Point3>(xC1, l41, relElevation, elevationModel);
 | 
						|
 | 
						|
  // Check that sigmas are correct (i.e., unit)
 | 
						|
  GaussianFactorGraph lfg = *factors.linearize(initValues);
 | 
						|
 | 
						|
  GaussianBayesTree actBT = *lfg.eliminateMultifrontal();
 | 
						|
 | 
						|
  // Check that all sigmas in an unconstrained bayes tree are set to one
 | 
						|
  for(const GaussianBayesTree::sharedClique& clique: actBT.nodes() | br::map_values) {
 | 
						|
    GaussianConditional::shared_ptr conditional = clique->conditional();
 | 
						|
    //size_t dim = conditional->rows();
 | 
						|
    //EXPECT(assert_equal(gtsam::Vector::Ones(dim), conditional->get_model()->sigmas(), tol));
 | 
						|
    EXPECT(!conditional->get_model());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
						|
/* ************************************************************************* */
 |