1012 lines
33 KiB
C++
1012 lines
33 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* @file testHybridGaussianFactorGraph.cpp
|
|
* @date Mar 11, 2022
|
|
* @author Fan Jiang
|
|
*/
|
|
|
|
#include <CppUnitLite/Test.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <gtsam/discrete/DecisionTreeFactor.h>
|
|
#include <gtsam/discrete/DiscreteKey.h>
|
|
#include <gtsam/discrete/DiscreteValues.h>
|
|
#include <gtsam/hybrid/GaussianMixture.h>
|
|
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
|
#include <gtsam/hybrid/HybridBayesNet.h>
|
|
#include <gtsam/hybrid/HybridBayesTree.h>
|
|
#include <gtsam/hybrid/HybridConditional.h>
|
|
#include <gtsam/hybrid/HybridFactor.h>
|
|
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
|
#include <gtsam/hybrid/HybridGaussianISAM.h>
|
|
#include <gtsam/hybrid/HybridValues.h>
|
|
#include <gtsam/inference/BayesNet.h>
|
|
#include <gtsam/inference/DotWriter.h>
|
|
#include <gtsam/inference/Key.h>
|
|
#include <gtsam/inference/Ordering.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/linear/JacobianFactor.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <iterator>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "Switching.h"
|
|
#include "TinyHybridExample.h"
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
using gtsam::symbol_shorthand::D;
|
|
using gtsam::symbol_shorthand::M;
|
|
using gtsam::symbol_shorthand::N;
|
|
using gtsam::symbol_shorthand::X;
|
|
using gtsam::symbol_shorthand::Y;
|
|
using gtsam::symbol_shorthand::Z;
|
|
|
|
// Set up sampling
|
|
std::mt19937_64 kRng(42);
|
|
|
|
/* ************************************************************************* */
|
|
TEST(HybridGaussianFactorGraph, Creation) {
|
|
HybridConditional conditional;
|
|
|
|
HybridGaussianFactorGraph hfg;
|
|
|
|
hfg.emplace_shared<JacobianFactor>(X(0), I_3x3, Z_3x1);
|
|
|
|
// Define a gaussian mixture conditional P(x0|x1, c0) and add it to the factor
|
|
// graph
|
|
GaussianMixture gm({X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{M(0), 2}),
|
|
GaussianMixture::Conditionals(
|
|
M(0),
|
|
std::make_shared<GaussianConditional>(
|
|
X(0), Z_3x1, I_3x3, X(1), I_3x3),
|
|
std::make_shared<GaussianConditional>(
|
|
X(0), Vector3::Ones(), I_3x3, X(1), I_3x3)));
|
|
hfg.add(gm);
|
|
|
|
EXPECT_LONGS_EQUAL(2, hfg.size());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(HybridGaussianFactorGraph, EliminateSequential) {
|
|
// Test elimination of a single variable.
|
|
HybridGaussianFactorGraph hfg;
|
|
|
|
hfg.emplace_shared<JacobianFactor>(0, I_3x3, Z_3x1);
|
|
|
|
auto result = hfg.eliminatePartialSequential(KeyVector{0});
|
|
|
|
EXPECT_LONGS_EQUAL(result.first->size(), 1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(HybridGaussianFactorGraph, EliminateMultifrontal) {
|
|
// Test multifrontal elimination
|
|
HybridGaussianFactorGraph hfg;
|
|
|
|
DiscreteKey m(M(1), 2);
|
|
|
|
// Add priors on x0 and c1
|
|
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
|
hfg.add(DecisionTreeFactor(m, {2, 8}));
|
|
|
|
Ordering ordering;
|
|
ordering.push_back(X(0));
|
|
auto result = hfg.eliminatePartialMultifrontal(ordering);
|
|
|
|
EXPECT_LONGS_EQUAL(result.first->size(), 1);
|
|
EXPECT_LONGS_EQUAL(result.second->size(), 1);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
|
|
HybridGaussianFactorGraph hfg;
|
|
|
|
// Add prior on x0
|
|
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
|
|
|
// Add factor between x0 and x1
|
|
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
|
|
|
// Add a gaussian mixture factor ϕ(x1, c1)
|
|
DiscreteKey m1(M(1), 2);
|
|
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
|
M(1), std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
|
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
|
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, dt));
|
|
|
|
auto result = hfg.eliminateSequential();
|
|
|
|
auto dc = result->at(2)->asDiscrete();
|
|
CHECK(dc);
|
|
DiscreteValues dv;
|
|
dv[M(1)] = 0;
|
|
// Regression test
|
|
EXPECT_DOUBLES_EQUAL(0.62245933120185448, dc->operator()(dv), 1e-3);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(HybridGaussianFactorGraph, eliminateFullSequentialSimple) {
|
|
HybridGaussianFactorGraph hfg;
|
|
|
|
DiscreteKey m1(M(1), 2);
|
|
|
|
// Add prior on x0
|
|
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
|
// Add factor between x0 and x1
|
|
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
|
|
|
std::vector<GaussianFactor::shared_ptr> factors = {
|
|
std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
|
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())};
|
|
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, factors));
|
|
|
|
// Discrete probability table for c1
|
|
hfg.add(DecisionTreeFactor(m1, {2, 8}));
|
|
// Joint discrete probability table for c1, c2
|
|
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
|
|
|
HybridBayesNet::shared_ptr result = hfg.eliminateSequential();
|
|
|
|
// There are 4 variables (2 continuous + 2 discrete) in the bayes net.
|
|
EXPECT_LONGS_EQUAL(4, result->size());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
|
|
HybridGaussianFactorGraph hfg;
|
|
|
|
DiscreteKey m1(M(1), 2);
|
|
|
|
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
|
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
|
|
|
hfg.add(GaussianMixtureFactor(
|
|
{X(1)}, {{M(1), 2}},
|
|
{std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
|
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
|
|
|
|
hfg.add(DecisionTreeFactor(m1, {2, 8}));
|
|
// TODO(Varun) Adding extra discrete variable not connected to continuous
|
|
// variable throws segfault
|
|
// hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
|
|
|
HybridBayesTree::shared_ptr result = hfg.eliminateMultifrontal();
|
|
|
|
// The bayes tree should have 3 cliques
|
|
EXPECT_LONGS_EQUAL(3, result->size());
|
|
// GTSAM_PRINT(*result);
|
|
// GTSAM_PRINT(*result->marginalFactor(M(2)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
|
|
HybridGaussianFactorGraph hfg;
|
|
|
|
DiscreteKey m(M(1), 2);
|
|
|
|
// Prior on x0
|
|
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
|
// Factor between x0-x1
|
|
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
|
|
|
// Decision tree with different modes on x1
|
|
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
|
M(1), std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
|
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
|
|
|
// Hybrid factor P(x1|c1)
|
|
hfg.add(GaussianMixtureFactor({X(1)}, {m}, dt));
|
|
// Prior factor on c1
|
|
hfg.add(DecisionTreeFactor(m, {2, 8}));
|
|
|
|
// Get a constrained ordering keeping c1 last
|
|
auto ordering_full = HybridOrdering(hfg);
|
|
|
|
// Returns a Hybrid Bayes Tree with distribution P(x0|x1)P(x1|c1)P(c1)
|
|
HybridBayesTree::shared_ptr hbt = hfg.eliminateMultifrontal(ordering_full);
|
|
|
|
EXPECT_LONGS_EQUAL(3, hbt->size());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/*
|
|
* This test is about how to assemble the Bayes Tree roots after we do partial
|
|
* elimination
|
|
*/
|
|
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
|
|
HybridGaussianFactorGraph hfg;
|
|
|
|
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
|
hfg.add(JacobianFactor(X(1), I_3x3, X(2), -I_3x3, Z_3x1));
|
|
|
|
{
|
|
hfg.add(GaussianMixtureFactor(
|
|
{X(0)}, {{M(0), 2}},
|
|
{std::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1),
|
|
std::make_shared<JacobianFactor>(X(0), I_3x3, Vector3::Ones())}));
|
|
|
|
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
|
|
M(1), std::make_shared<JacobianFactor>(X(2), I_3x3, Z_3x1),
|
|
std::make_shared<JacobianFactor>(X(2), I_3x3, Vector3::Ones()));
|
|
|
|
hfg.add(GaussianMixtureFactor({X(2)}, {{M(1), 2}}, dt1));
|
|
}
|
|
|
|
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
|
|
|
hfg.add(JacobianFactor(X(3), I_3x3, X(4), -I_3x3, Z_3x1));
|
|
hfg.add(JacobianFactor(X(4), I_3x3, X(5), -I_3x3, Z_3x1));
|
|
|
|
{
|
|
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
|
M(3), std::make_shared<JacobianFactor>(X(3), I_3x3, Z_3x1),
|
|
std::make_shared<JacobianFactor>(X(3), I_3x3, Vector3::Ones()));
|
|
|
|
hfg.add(GaussianMixtureFactor({X(3)}, {{M(3), 2}}, dt));
|
|
|
|
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
|
|
M(2), std::make_shared<JacobianFactor>(X(5), I_3x3, Z_3x1),
|
|
std::make_shared<JacobianFactor>(X(5), I_3x3, Vector3::Ones()));
|
|
|
|
hfg.add(GaussianMixtureFactor({X(5)}, {{M(2), 2}}, dt1));
|
|
}
|
|
|
|
auto ordering_full =
|
|
Ordering::ColamdConstrainedLast(hfg, {M(0), M(1), M(2), M(3)});
|
|
|
|
const auto [hbt, remaining] = hfg.eliminatePartialMultifrontal(ordering_full);
|
|
|
|
// 9 cliques in the bayes tree and 0 remaining variables to eliminate.
|
|
EXPECT_LONGS_EQUAL(9, hbt->size());
|
|
EXPECT_LONGS_EQUAL(0, remaining->size());
|
|
|
|
/*
|
|
(Fan) Explanation: the Junction tree will need to reeliminate to get to the
|
|
marginal on X(1), which is not possible because it involves eliminating
|
|
discrete before continuous. The solution to this, however, is in Murphy02.
|
|
TLDR is that this is 1. expensive and 2. inexact. nevertheless it is doable.
|
|
And I believe that we should do this.
|
|
*/
|
|
}
|
|
|
|
void dotPrint(const HybridGaussianFactorGraph::shared_ptr &hfg,
|
|
const HybridBayesTree::shared_ptr &hbt,
|
|
const Ordering &ordering) {
|
|
DotWriter dw;
|
|
dw.positionHints['c'] = 2;
|
|
dw.positionHints['x'] = 1;
|
|
std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
|
std::cout << "\n";
|
|
hbt->dot(std::cout);
|
|
|
|
std::cout << "\n";
|
|
std::cout << hfg->eliminateSequential(ordering)->dot(DefaultKeyFormatter, dw);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// TODO(fan): make a graph like Varun's paper one
|
|
TEST(HybridGaussianFactorGraph, Switching) {
|
|
auto N = 12;
|
|
auto hfg = makeSwitchingChain(N);
|
|
|
|
// X(5) will be the center, X(1-4), X(6-9)
|
|
// X(3), X(7)
|
|
// X(2), X(8)
|
|
// X(1), X(4), X(6), X(9)
|
|
// M(5) will be the center, M(1-4), M(6-8)
|
|
// M(3), M(7)
|
|
// M(1), M(4), M(2), M(6), M(8)
|
|
// auto ordering_full =
|
|
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
|
|
// X(5),
|
|
// M(1), M(4), M(2), M(6), M(8), M(3), M(7), M(5)});
|
|
KeyVector ordering;
|
|
|
|
{
|
|
std::vector<int> naturalX(N);
|
|
std::iota(naturalX.begin(), naturalX.end(), 1);
|
|
std::vector<Key> ordX;
|
|
std::transform(naturalX.begin(), naturalX.end(), std::back_inserter(ordX),
|
|
[](int x) { return X(x); });
|
|
|
|
auto [ndX, lvls] = makeBinaryOrdering(ordX);
|
|
std::copy(ndX.begin(), ndX.end(), std::back_inserter(ordering));
|
|
// TODO(dellaert): this has no effect!
|
|
for (auto &l : lvls) {
|
|
l = -l;
|
|
}
|
|
}
|
|
{
|
|
std::vector<int> naturalC(N - 1);
|
|
std::iota(naturalC.begin(), naturalC.end(), 1);
|
|
std::vector<Key> ordC;
|
|
std::transform(naturalC.begin(), naturalC.end(), std::back_inserter(ordC),
|
|
[](int x) { return M(x); });
|
|
|
|
// std::copy(ordC.begin(), ordC.end(), std::back_inserter(ordering));
|
|
const auto [ndC, lvls] = makeBinaryOrdering(ordC);
|
|
std::copy(ndC.begin(), ndC.end(), std::back_inserter(ordering));
|
|
}
|
|
auto ordering_full = Ordering(ordering);
|
|
|
|
// GTSAM_PRINT(*hfg);
|
|
// GTSAM_PRINT(ordering_full);
|
|
|
|
const auto [hbt, remaining] =
|
|
hfg->eliminatePartialMultifrontal(ordering_full);
|
|
|
|
// 12 cliques in the bayes tree and 0 remaining variables to eliminate.
|
|
EXPECT_LONGS_EQUAL(12, hbt->size());
|
|
EXPECT_LONGS_EQUAL(0, remaining->size());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// TODO(fan): make a graph like Varun's paper one
|
|
TEST(HybridGaussianFactorGraph, SwitchingISAM) {
|
|
auto N = 11;
|
|
auto hfg = makeSwitchingChain(N);
|
|
|
|
// X(5) will be the center, X(1-4), X(6-9)
|
|
// X(3), X(7)
|
|
// X(2), X(8)
|
|
// X(1), X(4), X(6), X(9)
|
|
// M(5) will be the center, M(1-4), M(6-8)
|
|
// M(3), M(7)
|
|
// M(1), M(4), M(2), M(6), M(8)
|
|
// auto ordering_full =
|
|
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
|
|
// X(5),
|
|
// M(1), M(4), M(2), M(6), M(8), M(3), M(7), M(5)});
|
|
KeyVector ordering;
|
|
|
|
{
|
|
std::vector<int> naturalX(N);
|
|
std::iota(naturalX.begin(), naturalX.end(), 1);
|
|
std::vector<Key> ordX;
|
|
std::transform(naturalX.begin(), naturalX.end(), std::back_inserter(ordX),
|
|
[](int x) { return X(x); });
|
|
|
|
auto [ndX, lvls] = makeBinaryOrdering(ordX);
|
|
std::copy(ndX.begin(), ndX.end(), std::back_inserter(ordering));
|
|
// TODO(dellaert): this has no effect!
|
|
for (auto &l : lvls) {
|
|
l = -l;
|
|
}
|
|
}
|
|
{
|
|
std::vector<int> naturalC(N - 1);
|
|
std::iota(naturalC.begin(), naturalC.end(), 1);
|
|
std::vector<Key> ordC;
|
|
std::transform(naturalC.begin(), naturalC.end(), std::back_inserter(ordC),
|
|
[](int x) { return M(x); });
|
|
|
|
// std::copy(ordC.begin(), ordC.end(), std::back_inserter(ordering));
|
|
const auto [ndC, lvls] = makeBinaryOrdering(ordC);
|
|
std::copy(ndC.begin(), ndC.end(), std::back_inserter(ordering));
|
|
}
|
|
auto ordering_full = Ordering(ordering);
|
|
|
|
const auto [hbt, remaining] =
|
|
hfg->eliminatePartialMultifrontal(ordering_full);
|
|
|
|
auto new_fg = makeSwitchingChain(12);
|
|
auto isam = HybridGaussianISAM(*hbt);
|
|
|
|
// Run an ISAM update.
|
|
HybridGaussianFactorGraph factorGraph;
|
|
factorGraph.push_back(new_fg->at(new_fg->size() - 2));
|
|
factorGraph.push_back(new_fg->at(new_fg->size() - 1));
|
|
isam.update(factorGraph);
|
|
|
|
// ISAM should have 12 factors after the last update
|
|
EXPECT_LONGS_EQUAL(12, isam.size());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
|
const int N = 7;
|
|
auto hfg = makeSwitchingChain(N, X);
|
|
hfg->push_back(*makeSwitchingChain(N, Y, D));
|
|
|
|
for (int t = 1; t <= N; t++) {
|
|
hfg->add(JacobianFactor(X(t), I_3x3, Y(t), -I_3x3, Vector3(1.0, 0.0, 0.0)));
|
|
}
|
|
|
|
KeyVector ordering;
|
|
|
|
KeyVector naturalX(N);
|
|
std::iota(naturalX.begin(), naturalX.end(), 1);
|
|
KeyVector ordX;
|
|
for (size_t i = 1; i <= N; i++) {
|
|
ordX.emplace_back(X(i));
|
|
ordX.emplace_back(Y(i));
|
|
}
|
|
|
|
for (size_t i = 1; i <= N - 1; i++) {
|
|
ordX.emplace_back(M(i));
|
|
}
|
|
for (size_t i = 1; i <= N - 1; i++) {
|
|
ordX.emplace_back(D(i));
|
|
}
|
|
|
|
{
|
|
DotWriter dw;
|
|
dw.positionHints['x'] = 1;
|
|
dw.positionHints['c'] = 0;
|
|
dw.positionHints['d'] = 3;
|
|
dw.positionHints['y'] = 2;
|
|
// std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
|
// std::cout << "\n";
|
|
}
|
|
|
|
{
|
|
DotWriter dw;
|
|
dw.positionHints['y'] = 9;
|
|
// dw.positionHints['c'] = 0;
|
|
// dw.positionHints['d'] = 3;
|
|
dw.positionHints['x'] = 1;
|
|
// std::cout << "\n";
|
|
// std::cout << hfg->eliminateSequential(Ordering(ordX))
|
|
// ->dot(DefaultKeyFormatter, dw);
|
|
// hfg->eliminateMultifrontal(Ordering(ordX))->dot(std::cout);
|
|
}
|
|
|
|
Ordering ordering_partial;
|
|
for (size_t i = 1; i <= N; i++) {
|
|
ordering_partial.emplace_back(X(i));
|
|
ordering_partial.emplace_back(Y(i));
|
|
}
|
|
const auto [hbn, remaining] =
|
|
hfg->eliminatePartialSequential(ordering_partial);
|
|
|
|
EXPECT_LONGS_EQUAL(14, hbn->size());
|
|
EXPECT_LONGS_EQUAL(11, remaining->size());
|
|
|
|
{
|
|
DotWriter dw;
|
|
dw.positionHints['x'] = 1;
|
|
dw.positionHints['c'] = 0;
|
|
dw.positionHints['d'] = 3;
|
|
dw.positionHints['y'] = 2;
|
|
// std::cout << remaining->dot(DefaultKeyFormatter, dw);
|
|
// std::cout << "\n";
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(HybridGaussianFactorGraph, optimize) {
|
|
HybridGaussianFactorGraph hfg;
|
|
|
|
DiscreteKey c1(C(1), 2);
|
|
|
|
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
|
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
|
|
|
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
|
C(1), std::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
|
std::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
|
|
|
hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
|
|
|
|
auto result = hfg.eliminateSequential();
|
|
|
|
HybridValues hv = result->optimize();
|
|
|
|
EXPECT(assert_equal(hv.atDiscrete(C(1)), int(0)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test adding of gaussian conditional and re-elimination.
|
|
TEST(HybridGaussianFactorGraph, Conditionals) {
|
|
Switching switching(4);
|
|
HybridGaussianFactorGraph hfg;
|
|
|
|
hfg.push_back(switching.linearizedFactorGraph.at(0)); // P(X1)
|
|
Ordering ordering;
|
|
ordering.push_back(X(0));
|
|
HybridBayesNet::shared_ptr bayes_net = hfg.eliminateSequential(ordering);
|
|
|
|
hfg.push_back(switching.linearizedFactorGraph.at(1)); // P(X1, X2 | M1)
|
|
hfg.push_back(*bayes_net);
|
|
hfg.push_back(switching.linearizedFactorGraph.at(2)); // P(X2, X3 | M2)
|
|
hfg.push_back(switching.linearizedFactorGraph.at(5)); // P(M1)
|
|
ordering.push_back(X(1));
|
|
ordering.push_back(X(2));
|
|
ordering.push_back(M(0));
|
|
ordering.push_back(M(1));
|
|
|
|
bayes_net = hfg.eliminateSequential(ordering);
|
|
|
|
HybridValues result = bayes_net->optimize();
|
|
|
|
Values expected_continuous;
|
|
expected_continuous.insert<double>(X(0), 0);
|
|
expected_continuous.insert<double>(X(1), 1);
|
|
expected_continuous.insert<double>(X(2), 2);
|
|
expected_continuous.insert<double>(X(3), 4);
|
|
Values result_continuous =
|
|
switching.linearizationPoint.retract(result.continuous());
|
|
EXPECT(assert_equal(expected_continuous, result_continuous));
|
|
|
|
DiscreteValues expected_discrete;
|
|
expected_discrete[M(0)] = 1;
|
|
expected_discrete[M(1)] = 1;
|
|
EXPECT(assert_equal(expected_discrete, result.discrete()));
|
|
}
|
|
|
|
/* ****************************************************************************/
|
|
// Test hybrid gaussian factor graph error and unnormalized probabilities
|
|
TEST(HybridGaussianFactorGraph, ErrorAndProbPrime) {
|
|
Switching s(3);
|
|
|
|
HybridGaussianFactorGraph graph = s.linearizedFactorGraph;
|
|
|
|
HybridBayesNet::shared_ptr hybridBayesNet = graph.eliminateSequential();
|
|
|
|
const HybridValues delta = hybridBayesNet->optimize();
|
|
const double error = graph.error(delta);
|
|
|
|
// regression
|
|
EXPECT(assert_equal(1.58886, error, 1e-5));
|
|
|
|
// Real test:
|
|
EXPECT(assert_equal(graph.probPrime(delta), exp(-error), 1e-7));
|
|
}
|
|
|
|
/* ****************************************************************************/
|
|
// Test hybrid gaussian factor graph error and unnormalized probabilities
|
|
TEST(HybridGaussianFactorGraph, ErrorAndProbPrimeTree) {
|
|
Switching s(3);
|
|
|
|
HybridGaussianFactorGraph graph = s.linearizedFactorGraph;
|
|
|
|
HybridBayesNet::shared_ptr hybridBayesNet = graph.eliminateSequential();
|
|
|
|
HybridValues delta = hybridBayesNet->optimize();
|
|
auto error_tree = graph.error(delta.continuous());
|
|
|
|
std::vector<DiscreteKey> discrete_keys = {{M(0), 2}, {M(1), 2}};
|
|
std::vector<double> leaves = {0.9998558, 0.4902432, 0.5193694, 0.0097568};
|
|
AlgebraicDecisionTree<Key> expected_error(discrete_keys, leaves);
|
|
|
|
// regression
|
|
EXPECT(assert_equal(expected_error, error_tree, 1e-7));
|
|
|
|
auto probs = graph.probPrime(delta.continuous());
|
|
std::vector<double> prob_leaves = {0.36793249, 0.61247742, 0.59489556,
|
|
0.99029064};
|
|
AlgebraicDecisionTree<Key> expected_probs(discrete_keys, prob_leaves);
|
|
|
|
// regression
|
|
EXPECT(assert_equal(expected_probs, probs, 1e-7));
|
|
}
|
|
|
|
/* ****************************************************************************/
|
|
// Check that assembleGraphTree assembles Gaussian factor graphs for each
|
|
// assignment.
|
|
TEST(HybridGaussianFactorGraph, assembleGraphTree) {
|
|
const int num_measurements = 1;
|
|
auto fg = tiny::createHybridGaussianFactorGraph(
|
|
num_measurements, VectorValues{{Z(0), Vector1(5.0)}});
|
|
EXPECT_LONGS_EQUAL(3, fg.size());
|
|
|
|
// Assemble graph tree:
|
|
auto actual = fg.assembleGraphTree();
|
|
|
|
// Create expected decision tree with two factor graphs:
|
|
|
|
// Get mixture factor:
|
|
auto mixture = fg.at<GaussianMixtureFactor>(0);
|
|
CHECK(mixture);
|
|
|
|
// Get prior factor:
|
|
const auto gf = fg.at<HybridConditional>(1);
|
|
CHECK(gf);
|
|
using GF = GaussianFactor::shared_ptr;
|
|
const GF prior = gf->asGaussian();
|
|
CHECK(prior);
|
|
|
|
// Create DiscreteValues for both 0 and 1:
|
|
DiscreteValues d0{{M(0), 0}}, d1{{M(0), 1}};
|
|
|
|
// Expected decision tree with two factor graphs:
|
|
// f(x0;mode=0)P(x0) and f(x0;mode=1)P(x0)
|
|
GaussianFactorGraphTree expected{
|
|
M(0), GaussianFactorGraph(std::vector<GF>{(*mixture)(d0), prior}),
|
|
GaussianFactorGraph(std::vector<GF>{(*mixture)(d1), prior})};
|
|
|
|
EXPECT(assert_equal(expected(d0), actual(d0), 1e-5));
|
|
EXPECT(assert_equal(expected(d1), actual(d1), 1e-5));
|
|
}
|
|
|
|
/* ****************************************************************************/
|
|
// Check that the factor graph unnormalized probability is proportional to the
|
|
// Bayes net probability for the given measurements.
|
|
bool ratioTest(const HybridBayesNet &bn, const VectorValues &measurements,
|
|
const HybridGaussianFactorGraph &fg, size_t num_samples = 100) {
|
|
auto compute_ratio = [&](HybridValues *sample) -> double {
|
|
sample->update(measurements); // update sample with given measurements:
|
|
return bn.evaluate(*sample) / fg.probPrime(*sample);
|
|
};
|
|
|
|
HybridValues sample = bn.sample(&kRng);
|
|
double expected_ratio = compute_ratio(&sample);
|
|
|
|
// Test ratios for a number of independent samples:
|
|
for (size_t i = 0; i < num_samples; i++) {
|
|
HybridValues sample = bn.sample(&kRng);
|
|
if (std::abs(expected_ratio - compute_ratio(&sample)) > 1e-6) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* ****************************************************************************/
|
|
// Check that the bayes net unnormalized probability is proportional to the
|
|
// Bayes net probability for the given measurements.
|
|
bool ratioTest(const HybridBayesNet &bn, const VectorValues &measurements,
|
|
const HybridBayesNet &posterior, size_t num_samples = 100) {
|
|
auto compute_ratio = [&](HybridValues *sample) -> double {
|
|
sample->update(measurements); // update sample with given measurements:
|
|
return bn.evaluate(*sample) / posterior.evaluate(*sample);
|
|
};
|
|
|
|
HybridValues sample = bn.sample(&kRng);
|
|
double expected_ratio = compute_ratio(&sample);
|
|
|
|
// Test ratios for a number of independent samples:
|
|
for (size_t i = 0; i < num_samples; i++) {
|
|
HybridValues sample = bn.sample(&kRng);
|
|
// GTSAM_PRINT(sample);
|
|
// std::cout << "ratio: " << compute_ratio(&sample) << std::endl;
|
|
if (std::abs(expected_ratio - compute_ratio(&sample)) > 1e-6) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* ****************************************************************************/
|
|
// Check that eliminating tiny net with 1 measurement yields correct result.
|
|
TEST(HybridGaussianFactorGraph, EliminateTiny1) {
|
|
const int num_measurements = 1;
|
|
const VectorValues measurements{{Z(0), Vector1(5.0)}};
|
|
auto bn = tiny::createHybridBayesNet(num_measurements);
|
|
auto fg = bn.toFactorGraph(measurements);
|
|
EXPECT_LONGS_EQUAL(3, fg.size());
|
|
|
|
EXPECT(ratioTest(bn, measurements, fg));
|
|
|
|
// Create expected Bayes Net:
|
|
HybridBayesNet expectedBayesNet;
|
|
|
|
// Create Gaussian mixture on X(0).
|
|
using tiny::mode;
|
|
// regression, but mean checked to be 5.0 in both cases:
|
|
const auto conditional0 = std::make_shared<GaussianConditional>(
|
|
X(0), Vector1(14.1421), I_1x1 * 2.82843),
|
|
conditional1 = std::make_shared<GaussianConditional>(
|
|
X(0), Vector1(10.1379), I_1x1 * 2.02759);
|
|
expectedBayesNet.emplace_back(
|
|
new GaussianMixture({X(0)}, {}, {mode}, {conditional0, conditional1}));
|
|
|
|
// Add prior on mode.
|
|
expectedBayesNet.emplace_back(new DiscreteConditional(mode, "74/26"));
|
|
|
|
// Test elimination
|
|
const auto posterior = fg.eliminateSequential();
|
|
EXPECT(assert_equal(expectedBayesNet, *posterior, 0.01));
|
|
|
|
EXPECT(ratioTest(bn, measurements, *posterior));
|
|
}
|
|
|
|
/* ****************************************************************************/
|
|
// Check that eliminating tiny net with 1 measurement with mode order swapped
|
|
// yields correct result.
|
|
TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
|
|
const VectorValues measurements{{Z(0), Vector1(5.0)}};
|
|
|
|
// Create mode key: 1 is low-noise, 0 is high-noise.
|
|
const DiscreteKey mode{M(0), 2};
|
|
HybridBayesNet bn;
|
|
|
|
// Create Gaussian mixture z_0 = x0 + noise for each measurement.
|
|
bn.emplace_back(new GaussianMixture(
|
|
{Z(0)}, {X(0)}, {mode},
|
|
{GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, 3),
|
|
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1,
|
|
0.5)}));
|
|
|
|
// Create prior on X(0).
|
|
bn.push_back(
|
|
GaussianConditional::sharedMeanAndStddev(X(0), Vector1(5.0), 0.5));
|
|
|
|
// Add prior on mode.
|
|
bn.emplace_back(new DiscreteConditional(mode, "1/1"));
|
|
|
|
// bn.print();
|
|
auto fg = bn.toFactorGraph(measurements);
|
|
EXPECT_LONGS_EQUAL(3, fg.size());
|
|
|
|
// fg.print();
|
|
|
|
EXPECT(ratioTest(bn, measurements, fg));
|
|
|
|
// Create expected Bayes Net:
|
|
HybridBayesNet expectedBayesNet;
|
|
|
|
// Create Gaussian mixture on X(0).
|
|
// regression, but mean checked to be 5.0 in both cases:
|
|
const auto conditional0 = std::make_shared<GaussianConditional>(
|
|
X(0), Vector1(10.1379), I_1x1 * 2.02759),
|
|
conditional1 = std::make_shared<GaussianConditional>(
|
|
X(0), Vector1(14.1421), I_1x1 * 2.82843);
|
|
expectedBayesNet.emplace_back(
|
|
new GaussianMixture({X(0)}, {}, {mode}, {conditional0, conditional1}));
|
|
|
|
// Add prior on mode.
|
|
expectedBayesNet.emplace_back(new DiscreteConditional(mode, "1/1"));
|
|
|
|
// Test elimination
|
|
const auto posterior = fg.eliminateSequential();
|
|
// EXPECT(assert_equal(expectedBayesNet, *posterior, 0.01));
|
|
|
|
EXPECT(ratioTest(bn, measurements, *posterior));
|
|
|
|
// posterior->print();
|
|
// posterior->optimize().print();
|
|
}
|
|
|
|
/* ****************************************************************************/
|
|
// Check that eliminating tiny net with 2 measurements yields correct result.
|
|
TEST(HybridGaussianFactorGraph, EliminateTiny2) {
|
|
// Create factor graph with 2 measurements such that posterior mean = 5.0.
|
|
const int num_measurements = 2;
|
|
const VectorValues measurements{{Z(0), Vector1(4.0)}, {Z(1), Vector1(6.0)}};
|
|
auto bn = tiny::createHybridBayesNet(num_measurements);
|
|
auto fg = bn.toFactorGraph(measurements);
|
|
EXPECT_LONGS_EQUAL(4, fg.size());
|
|
|
|
// Create expected Bayes Net:
|
|
HybridBayesNet expectedBayesNet;
|
|
|
|
// Create Gaussian mixture on X(0).
|
|
using tiny::mode;
|
|
// regression, but mean checked to be 5.0 in both cases:
|
|
const auto conditional0 = std::make_shared<GaussianConditional>(
|
|
X(0), Vector1(17.3205), I_1x1 * 3.4641),
|
|
conditional1 = std::make_shared<GaussianConditional>(
|
|
X(0), Vector1(10.274), I_1x1 * 2.0548);
|
|
expectedBayesNet.emplace_back(
|
|
new GaussianMixture({X(0)}, {}, {mode}, {conditional0, conditional1}));
|
|
|
|
// Add prior on mode.
|
|
expectedBayesNet.emplace_back(new DiscreteConditional(mode, "23/77"));
|
|
|
|
// Test elimination
|
|
const auto posterior = fg.eliminateSequential();
|
|
EXPECT(assert_equal(expectedBayesNet, *posterior, 0.01));
|
|
|
|
EXPECT(ratioTest(bn, measurements, *posterior));
|
|
}
|
|
|
|
/* ****************************************************************************/
|
|
// Test eliminating tiny net with 1 mode per measurement.
|
|
TEST(HybridGaussianFactorGraph, EliminateTiny22) {
|
|
// Create factor graph with 2 measurements such that posterior mean = 5.0.
|
|
const int num_measurements = 2;
|
|
const bool manyModes = true;
|
|
|
|
// Create Bayes net and convert to factor graph.
|
|
auto bn = tiny::createHybridBayesNet(num_measurements, manyModes);
|
|
const VectorValues measurements{{Z(0), Vector1(4.0)}, {Z(1), Vector1(6.0)}};
|
|
auto fg = bn.toFactorGraph(measurements);
|
|
EXPECT_LONGS_EQUAL(5, fg.size());
|
|
|
|
EXPECT(ratioTest(bn, measurements, fg));
|
|
|
|
// Test elimination
|
|
const auto posterior = fg.eliminateSequential();
|
|
|
|
EXPECT(ratioTest(bn, measurements, *posterior));
|
|
}
|
|
|
|
/* ****************************************************************************/
|
|
// Test elimination of a switching network with one mode per measurement.
|
|
TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
|
|
// Create a switching network with one mode per measurement.
|
|
HybridBayesNet bn;
|
|
|
|
// NOTE: we add reverse topological so we can sample from the Bayes net.:
|
|
|
|
// Add measurements:
|
|
for (size_t t : {0, 1, 2}) {
|
|
// Create Gaussian mixture on Z(t) conditioned on X(t) and mode N(t):
|
|
const auto noise_mode_t = DiscreteKey{N(t), 2};
|
|
bn.emplace_back(
|
|
new GaussianMixture({Z(t)}, {X(t)}, {noise_mode_t},
|
|
{GaussianConditional::sharedMeanAndStddev(
|
|
Z(t), I_1x1, X(t), Z_1x1, 0.5),
|
|
GaussianConditional::sharedMeanAndStddev(
|
|
Z(t), I_1x1, X(t), Z_1x1, 3.0)}));
|
|
|
|
// Create prior on discrete mode N(t):
|
|
bn.emplace_back(new DiscreteConditional(noise_mode_t, "20/80"));
|
|
}
|
|
|
|
// Add motion models:
|
|
for (size_t t : {2, 1}) {
|
|
// Create Gaussian mixture on X(t) conditioned on X(t-1) and mode M(t-1):
|
|
const auto motion_model_t = DiscreteKey{M(t), 2};
|
|
bn.emplace_back(
|
|
new GaussianMixture({X(t)}, {X(t - 1)}, {motion_model_t},
|
|
{GaussianConditional::sharedMeanAndStddev(
|
|
X(t), I_1x1, X(t - 1), Z_1x1, 0.2),
|
|
GaussianConditional::sharedMeanAndStddev(
|
|
X(t), I_1x1, X(t - 1), I_1x1, 0.2)}));
|
|
|
|
// Create prior on motion model M(t):
|
|
bn.emplace_back(new DiscreteConditional(motion_model_t, "40/60"));
|
|
}
|
|
|
|
// Create Gaussian prior on continuous X(0) using sharedMeanAndStddev:
|
|
bn.push_back(GaussianConditional::sharedMeanAndStddev(X(0), Z_1x1, 0.1));
|
|
|
|
// Make sure we an sample from the Bayes net:
|
|
EXPECT_LONGS_EQUAL(6, bn.sample().continuous().size());
|
|
|
|
// Create measurements consistent with moving right every time:
|
|
const VectorValues measurements{
|
|
{Z(0), Vector1(0.0)}, {Z(1), Vector1(1.0)}, {Z(2), Vector1(2.0)}};
|
|
const HybridGaussianFactorGraph fg = bn.toFactorGraph(measurements);
|
|
|
|
// Factor graph is:
|
|
// D D
|
|
// | |
|
|
// m1 m2
|
|
// | |
|
|
// C-x0-HC-x1-HC-x2
|
|
// | | |
|
|
// HF HF HF
|
|
// | | |
|
|
// n0 n1 n2
|
|
// | | |
|
|
// D D D
|
|
EXPECT_LONGS_EQUAL(11, fg.size());
|
|
EXPECT(ratioTest(bn, measurements, fg));
|
|
|
|
// Do elimination of X(2) only:
|
|
auto [bn1, fg1] = fg.eliminatePartialSequential(Ordering{X(2)});
|
|
fg1->push_back(*bn1);
|
|
EXPECT(ratioTest(bn, measurements, *fg1));
|
|
|
|
// Create ordering that eliminates in time order, then discrete modes:
|
|
Ordering ordering{X(2), X(1), X(0), N(0), N(1), N(2), M(1), M(2)};
|
|
|
|
// Do elimination:
|
|
const HybridBayesNet::shared_ptr posterior = fg.eliminateSequential(ordering);
|
|
|
|
// Test resulting posterior Bayes net has correct size:
|
|
EXPECT_LONGS_EQUAL(8, posterior->size());
|
|
|
|
// Ratio test
|
|
EXPECT(ratioTest(bn, measurements, *posterior));
|
|
}
|
|
|
|
/* ****************************************************************************/
|
|
// Test printErrors with multivariate example.
|
|
TEST(HybridGaussianFactorGraph, PrintErrors) {
|
|
HybridGaussianFactorGraph hfg;
|
|
HybridBayesNet bayesNet;
|
|
|
|
size_t num_measurements = 1;
|
|
// Create Gaussian mixture z_i = x0 + noise for each measurement.
|
|
for (size_t i = 0; i < num_measurements; i++) {
|
|
const DiscreteKey mode_i{M(i), 2};
|
|
bayesNet.emplace_back(new GaussianMixture(
|
|
{Z(i)}, {X(0)}, {mode_i},
|
|
{GaussianConditional::sharedMeanAndStddev(Z(i), I_3x3, X(0), Z_3x1, 10),
|
|
GaussianConditional::sharedMeanAndStddev(Z(i), I_3x3, X(0), Z_3x1,
|
|
0.1)}));
|
|
}
|
|
|
|
// Create prior on X(0).
|
|
bayesNet.push_back(GaussianConditional::sharedMeanAndStddev(
|
|
X(0), Vector3(1.0, 2.0, 5.0), 0.5));
|
|
|
|
// Add prior on mode.
|
|
const size_t nrModes = 1;
|
|
for (size_t i = 0; i < nrModes; i++) {
|
|
bayesNet.emplace_back(new DiscreteConditional({M(i), 2}, "4/6"));
|
|
}
|
|
|
|
VectorValues measurements{{Z(0), Vector3(1.0, 2.0, 5.0)}};
|
|
HybridGaussianFactorGraph measurement_fg =
|
|
bayesNet.toFactorGraph(measurements);
|
|
HybridValues values = bayesNet.optimize();
|
|
|
|
std::stringstream buffer;
|
|
// Save the original output stream so we can reset later
|
|
std::streambuf *old = std::cout.rdbuf(buffer.rdbuf());
|
|
|
|
// We test against actual std::cout for faithful reproduction
|
|
measurement_fg.printErrors(values);
|
|
|
|
// Get output string and reset stdout
|
|
std::string actual = buffer.str();
|
|
std::cout.rdbuf(old);
|
|
|
|
std::string expected = R"(HybridGaussianFactorGraph: size: 3
|
|
|
|
Factor 0: Hybrid [x0; m0]{
|
|
Choice(m0)
|
|
0 Leaf :
|
|
A[x0] = [
|
|
-1, -0, -0;
|
|
-0, -1, -0;
|
|
-0, -0, -1;
|
|
0, 0, 0
|
|
]
|
|
b = [ -1 -2 -5 5.25652 ]
|
|
Noise model: diagonal sigmas [10; 10; 10; 1];
|
|
|
|
1 Leaf :
|
|
A[x0] = [
|
|
-1, -0, -0;
|
|
-0, -1, -0;
|
|
-0, -0, -1
|
|
]
|
|
b = [ -1 -2 -5 ]
|
|
isotropic dim=3 sigma=0.1
|
|
|
|
}
|
|
error = Choice(m0)
|
|
0 Leaf 13.815511
|
|
1 Leaf 0
|
|
|
|
|
|
Factor 1: p(x0)
|
|
R = [ 1 0 0 ]
|
|
[ 0 1 0 ]
|
|
[ 0 0 1 ]
|
|
d = [ 1 2 5 ]
|
|
mean: 1 elements
|
|
x0: 1 2 5
|
|
isotropic dim=3 sigma=0.5
|
|
error = 0
|
|
|
|
Factor 2: P( m0 ):
|
|
Choice(m0)
|
|
0 Leaf 0.4
|
|
1 Leaf 0.6
|
|
|
|
error = Choice(m0)
|
|
0 Leaf 0.91629073
|
|
1 Leaf 0.51082562
|
|
|
|
|
|
)";
|
|
EXPECT(expected == actual);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|