gtsam/gtsam/geometry/CalibratedCamera.cpp

172 lines
5.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file CalibratedCamera.cpp
* @brief Calibrated camera for which only pose is unknown
* @date Aug 17, 2009
* @author Frank Dellaert
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/CalibratedCamera.h>
namespace gtsam {
/* ************************************************************************* */
bool PinholeBase::equals(const PinholeBase &camera, double tol) const {
return pose_.equals(camera.pose(), tol);
}
/* ************************************************************************* */
void PinholeBase::print(const std::string& s) const {
pose_.print(s + ".pose");
}
/* ************************************************************************* */
const Pose3& PinholeBase::pose(OptionalJacobian<6, 6> H) const {
if (H) {
H->setZero();
H->block(0, 0, 6, 6) = I_6x6;
}
return pose_;
}
/* ************************************************************************* */
Point2 PinholeBase::project_to_camera(const Point3& P,
OptionalJacobian<2, 3> Dpoint) {
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
if (P.z() <= 0)
throw CheiralityException();
#endif
double d = 1.0 / P.z();
const double u = P.x() * d, v = P.y() * d;
if (Dpoint)
*Dpoint << d, 0.0, -u * d, 0.0, d, -v * d;
return Point2(u, v);
}
/* ************************************************************************* */
CalibratedCamera::CalibratedCamera(const Pose3& pose) :
pose_(pose) {
}
/* ************************************************************************* */
CalibratedCamera::CalibratedCamera(const Vector &v) :
pose_(Pose3::Expmap(v)) {
}
/* ************************************************************************* */
Point2 CalibratedCamera::project_to_camera(const Point3& P,
OptionalJacobian<2, 3> H1) {
if (H1) {
double d = 1.0 / P.z(), d2 = d * d;
*H1 << d, 0.0, -P.x() * d2, 0.0, d, -P.y() * d2;
}
return Point2(P.x() / P.z(), P.y() / P.z());
}
/* ************************************************************************* */
Point3 CalibratedCamera::backproject_from_camera(const Point2& p,
const double scale) {
return Point3(p.x() * scale, p.y() * scale, scale);
}
/* ************************************************************************* */
Pose3 CalibratedCamera::LevelPose(const Pose2& pose2, double height) {
const double st = sin(pose2.theta()), ct = cos(pose2.theta());
const Point3 x(st, -ct, 0), y(0, 0, -1), z(ct, st, 0);
const Rot3 wRc(x, y, z);
const Point3 t(pose2.x(), pose2.y(), height);
return Pose3(wRc, t);
}
/* ************************************************************************* */
CalibratedCamera CalibratedCamera::Level(const Pose2& pose2, double height) {
return CalibratedCamera(LevelPose(pose2, height));
}
/* ************************************************************************* */
Pose3 CalibratedCamera::LookatPose(const Point3& eye, const Point3& target,
const Point3& upVector) {
Point3 zc = target - eye;
zc = zc / zc.norm();
Point3 xc = (-upVector).cross(zc); // minus upVector since yc is pointing down
xc = xc / xc.norm();
Point3 yc = zc.cross(xc);
return Pose3(Rot3(xc, yc, zc), eye);
}
/* ************************************************************************* */
CalibratedCamera CalibratedCamera::Lookat(const Point3& eye,
const Point3& target, const Point3& upVector) {
return CalibratedCamera(LookatPose(eye, target, upVector));
}
/* ************************************************************************* */
Point2 CalibratedCamera::project(const Point3& point,
OptionalJacobian<2, 6> Dpose, OptionalJacobian<2, 3> Dpoint) const {
#ifdef CALIBRATEDCAMERA_CHAIN_RULE
Matrix36 Dpose_;
Matrix3 Dpoint_;
Point3 q = pose_.transform_to(point, Dpose ? Dpose_ : 0, Dpoint ? Dpoint_ : 0);
#else
Point3 q = pose_.transform_to(point);
#endif
Point2 intrinsic = project_to_camera(q);
// Check if point is in front of camera
if (q.z() <= 0)
throw CheiralityException();
if (Dpose || Dpoint) {
#ifdef CALIBRATEDCAMERA_CHAIN_RULE
// just implement chain rule
if(Dpose && Dpoint) {
Matrix23 H;
project_to_camera(q,H);
if (Dpose) *Dpose = H * (*Dpose_);
if (Dpoint) *Dpoint = H * (*Dpoint_);
}
#else
// optimized version, see CalibratedCamera.nb
const double z = q.z(), d = 1.0 / z;
const double u = intrinsic.x(), v = intrinsic.y(), uv = u * v;
if (Dpose)
*Dpose << uv, -(1. + u * u), v, -d, 0., d * u, (1. + v * v), -uv, -u, 0., -d, d
* v;
if (Dpoint) {
const Matrix3 R(pose_.rotation().matrix());
Matrix23 Dpoint_;
Dpoint_ << R(0, 0) - u * R(0, 2), R(1, 0) - u * R(1, 2), R(2, 0)
- u * R(2, 2), R(0, 1) - v * R(0, 2), R(1, 1) - v * R(1, 2), R(2, 1)
- v * R(2, 2);
*Dpoint = d * Dpoint_;
}
#endif
}
return intrinsic;
}
/* ************************************************************************* */
CalibratedCamera CalibratedCamera::retract(const Vector& d) const {
return CalibratedCamera(pose().retract(d));
}
/* ************************************************************************* */
Vector CalibratedCamera::localCoordinates(const CalibratedCamera& T2) const {
return pose().localCoordinates(T2.pose());
}
/* ************************************************************************* */
}