gtsam/timing/timeFactorOverhead.cpp

160 lines
5.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file timeFactorOverhead.cpp
* @brief Compares times of solving large single-factor graphs with their multi-factor equivalents.
* @author Richard Roberts
* @date Aug 20, 2010
*/
#include <gtsam/base/timing.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/linear/VectorValues.h>
#include <random>
#include <vector>
using namespace gtsam;
using namespace std;
static std::mt19937 rng;
static std::uniform_real_distribution<> uniform(0.0, 1.0);
int main(int argc, char *argv[]) {
Key key = 0;
size_t vardim = 2;
size_t blockdim = 1;
size_t nBlocks = 4000;
size_t nTrials = 20;
double blockbuild, blocksolve, combbuild, combsolve;
cout << "\n1 variable of dimension " << vardim << ", " <<
nBlocks << " blocks of dimension " << blockdim << "\n";
cout << nTrials << " trials\n";
/////////////////////////////////////////////////////////////////////////////
// Timing test with blockwise Gaussian factor graphs
{
// Build GFG's
cout << "Building blockwise Gaussian factor graphs... ";
cout.flush();
gttic_(blockbuild);
vector<GaussianFactorGraph> blockGfgs;
blockGfgs.reserve(nTrials);
for(size_t trial=0; trial<nTrials; ++trial) {
blockGfgs.push_back(GaussianFactorGraph());
SharedDiagonal noise = noiseModel::Isotropic::Sigma(blockdim, 1.0);
for(size_t i=0; i<nBlocks; ++i) {
// Generate a random Gaussian factor
Matrix A(blockdim, vardim);
for(size_t j=0; j<blockdim; ++j)
for(size_t k=0; k<vardim; ++k)
A(j,k) = uniform(rng);
Vector b(blockdim);
for(size_t j=0; j<blockdim; ++j)
b(j) = uniform(rng);
blockGfgs[trial].push_back(boost::make_shared<JacobianFactor>(key, A, b, noise));
}
}
gttoc_(blockbuild);
tictoc_getNode(blockbuildNode, blockbuild);
blockbuild = blockbuildNode->secs();
cout << blockbuild << " s" << endl;
// Solve GFG's
cout << "Solving blockwise Gaussian factor graphs... ";
cout.flush();
gttic_(blocksolve);
for(size_t trial=0; trial<nTrials; ++trial) {
// cout << "Trial " << trial << endl;
GaussianBayesNet::shared_ptr gbn = blockGfgs[trial].eliminateSequential();
VectorValues soln = gbn->optimize();
}
gttoc_(blocksolve);
tictoc_getNode(blocksolveNode, blocksolve);
blocksolve = blocksolveNode->secs();
cout << blocksolve << " s" << endl;
}
/////////////////////////////////////////////////////////////////////////////
// Timing test with combined-factor Gaussian factor graphs
{
// Build GFG's
cout << "Building combined-factor Gaussian factor graphs... ";
cout.flush();
gttic_(combbuild);
vector<GaussianFactorGraph> combGfgs;
for(size_t trial=0; trial<nTrials; ++trial) {
combGfgs.push_back(GaussianFactorGraph());
SharedDiagonal noise = noiseModel::Isotropic::Sigma(blockdim, 1.0);
Matrix Acomb(blockdim*nBlocks, vardim);
Vector bcomb(blockdim*nBlocks);
for(size_t i=0; i<nBlocks; ++i) {
// Generate a random Gaussian factor
for(size_t j=0; j<blockdim; ++j)
for(size_t k=0; k<vardim; ++k)
Acomb(blockdim*i+j, k) = uniform(rng);
Vector b(blockdim);
for(size_t j=0; j<blockdim; ++j)
bcomb(blockdim*i+j) = uniform(rng);
}
combGfgs[trial].push_back(boost::make_shared<JacobianFactor>(key, Acomb, bcomb,
noiseModel::Isotropic::Sigma(blockdim*nBlocks, 1.0)));
}
gttoc(combbuild);
tictoc_getNode(combbuildNode, combbuild);
combbuild = combbuildNode->secs();
cout << combbuild << " s" << endl;
// Solve GFG's
cout << "Solving combined-factor Gaussian factor graphs... ";
cout.flush();
gttic_(combsolve);
for(size_t trial=0; trial<nTrials; ++trial) {
GaussianBayesNet::shared_ptr gbn = combGfgs[trial].eliminateSequential();
VectorValues soln = gbn->optimize();
}
gttoc_(combsolve);
tictoc_getNode(combsolveNode, combsolve);
combsolve = combsolveNode->secs();
cout << combsolve << " s" << endl;
}
/////////////////////////////////////////////////////////////////////////////
// Print per-graph times
cout << "\nPer-factor-graph times for building and solving\n";
cout << "Blockwise: total " << (1000.0*(blockbuild+blocksolve)/double(nTrials)) <<
" build " << (1000.0*blockbuild/double(nTrials)) <<
" solve " << (1000.0*blocksolve/double(nTrials)) << " ms/graph\n";
cout << "Combined: total " << (1000.0*(combbuild+combsolve)/double(nTrials)) <<
" build " << (1000.0*combbuild/double(nTrials)) <<
" solve " << (1000.0*combsolve/double(nTrials)) << " ms/graph\n";
cout << "Fraction of time spent in overhead\n" <<
" total " << (((blockbuild+blocksolve)-(combbuild+combsolve)) / (blockbuild+blocksolve)) << "\n" <<
" build " << ((blockbuild-combbuild) / blockbuild) << "\n" <<
" solve " << ((blocksolve-combsolve) / blocksolve) << "\n";
cout << endl;
return 0;
}