gtsam/gtsam/3rdparty/Spectra/SymGEigsSolver.h

327 lines
15 KiB
C++

// Copyright (C) 2016-2019 Yixuan Qiu <yixuan.qiu@cos.name>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
#ifndef SYM_GEIGS_SOLVER_H
#define SYM_GEIGS_SOLVER_H
#include "SymEigsBase.h"
#include "Util/GEigsMode.h"
#include "MatOp/internal/SymGEigsCholeskyOp.h"
#include "MatOp/internal/SymGEigsRegInvOp.h"
namespace Spectra {
///
/// \defgroup GEigenSolver Generalized Eigen Solvers
///
/// Generalized eigen solvers for different types of problems.
///
///
/// \ingroup GEigenSolver
///
/// This class implements the generalized eigen solver for real symmetric
/// matrices, i.e., to solve \f$Ax=\lambda Bx\f$ where \f$A\f$ is symmetric and
/// \f$B\f$ is positive definite.
///
/// There are two modes of this solver, specified by the template parameter
/// GEigsMode. See the pages for the specialized classes for details.
/// - The Cholesky mode assumes that \f$B\f$ can be factorized using Cholesky
/// decomposition, which is the preferred mode when the decomposition is
/// available. (This can be easily done in Eigen using the dense or sparse
/// Cholesky solver.)
/// See \ref SymGEigsSolver<Scalar, SelectionRule, OpType, BOpType, GEIGS_CHOLESKY> "SymGEigsSolver (Cholesky mode)" for more details.
/// - The regular inverse mode requires the matrix-vector product \f$Bv\f$ and the
/// linear equation solving operation \f$B^{-1}v\f$. This mode should only be
/// used when the Cholesky decomposition of \f$B\f$ is hard to implement, or
/// when computing \f$B^{-1}v\f$ is much faster than the Cholesky decomposition.
/// See \ref SymGEigsSolver<Scalar, SelectionRule, OpType, BOpType, GEIGS_REGULAR_INVERSE> "SymGEigsSolver (Regular inverse mode)" for more details.
// Empty class template
template <typename Scalar,
int SelectionRule,
typename OpType,
typename BOpType,
int GEigsMode>
class SymGEigsSolver
{};
///
/// \ingroup GEigenSolver
///
/// This class implements the generalized eigen solver for real symmetric
/// matrices using Cholesky decomposition, i.e., to solve \f$Ax=\lambda Bx\f$
/// where \f$A\f$ is symmetric and \f$B\f$ is positive definite with the Cholesky
/// decomposition \f$B=LL'\f$.
///
/// This solver requires two matrix operation objects: one for \f$A\f$ that implements
/// the matrix multiplication \f$Av\f$, and one for \f$B\f$ that implements the lower
/// and upper triangular solving \f$L^{-1}v\f$ and \f$(L')^{-1}v\f$.
///
/// If \f$A\f$ and \f$B\f$ are stored as Eigen matrices, then the first operation
/// can be created using the DenseSymMatProd or SparseSymMatProd classes, and
/// the second operation can be created using the DenseCholesky or SparseCholesky
/// classes. If the users need to define their own operation classes, then they
/// should implement all the public member functions as in those built-in classes.
///
/// \tparam Scalar The element type of the matrix.
/// Currently supported types are `float`, `double` and `long double`.
/// \tparam SelectionRule An enumeration value indicating the selection rule of
/// the requested eigenvalues, for example `LARGEST_MAGN`
/// to retrieve eigenvalues with the largest magnitude.
/// The full list of enumeration values can be found in
/// \ref Enumerations.
/// \tparam OpType The name of the matrix operation class for \f$A\f$. Users could either
/// use the wrapper classes such as DenseSymMatProd and
/// SparseSymMatProd, or define their
/// own that implements all the public member functions as in
/// DenseSymMatProd.
/// \tparam BOpType The name of the matrix operation class for \f$B\f$. Users could either
/// use the wrapper classes such as DenseCholesky and
/// SparseCholesky, or define their
/// own that implements all the public member functions as in
/// DenseCholesky.
/// \tparam GEigsMode Mode of the generalized eigen solver. In this solver
/// it is Spectra::GEIGS_CHOLESKY.
///
/// Below is an example that demonstrates the usage of this class.
///
/// \code{.cpp}
/// #include <Eigen/Core>
/// #include <Eigen/SparseCore>
/// #include <Eigen/Eigenvalues>
/// #include <Spectra/SymGEigsSolver.h>
/// #include <Spectra/MatOp/DenseSymMatProd.h>
/// #include <Spectra/MatOp/SparseCholesky.h>
/// #include <iostream>
///
/// using namespace Spectra;
///
/// int main()
/// {
/// // We are going to solve the generalized eigenvalue problem A * x = lambda * B * x
/// const int n = 100;
///
/// // Define the A matrix
/// Eigen::MatrixXd M = Eigen::MatrixXd::Random(n, n);
/// Eigen::MatrixXd A = M + M.transpose();
///
/// // Define the B matrix, a band matrix with 2 on the diagonal and 1 on the subdiagonals
/// Eigen::SparseMatrix<double> B(n, n);
/// B.reserve(Eigen::VectorXi::Constant(n, 3));
/// for(int i = 0; i < n; i++)
/// {
/// B.insert(i, i) = 2.0;
/// if(i > 0)
/// B.insert(i - 1, i) = 1.0;
/// if(i < n - 1)
/// B.insert(i + 1, i) = 1.0;
/// }
///
/// // Construct matrix operation object using the wrapper classes
/// DenseSymMatProd<double> op(A);
/// SparseCholesky<double> Bop(B);
///
/// // Construct generalized eigen solver object, requesting the largest three generalized eigenvalues
/// SymGEigsSolver<double, LARGEST_ALGE, DenseSymMatProd<double>, SparseCholesky<double>, GEIGS_CHOLESKY>
/// geigs(&op, &Bop, 3, 6);
///
/// // Initialize and compute
/// geigs.init();
/// int nconv = geigs.compute();
///
/// // Retrieve results
/// Eigen::VectorXd evalues;
/// Eigen::MatrixXd evecs;
/// if(geigs.info() == SUCCESSFUL)
/// {
/// evalues = geigs.eigenvalues();
/// evecs = geigs.eigenvectors();
/// }
///
/// std::cout << "Generalized eigenvalues found:\n" << evalues << std::endl;
/// std::cout << "Generalized eigenvectors found:\n" << evecs.topRows(10) << std::endl;
///
/// // Verify results using the generalized eigen solver in Eigen
/// Eigen::MatrixXd Bdense = B;
/// Eigen::GeneralizedSelfAdjointEigenSolver<Eigen::MatrixXd> es(A, Bdense);
///
/// std::cout << "Generalized eigenvalues:\n" << es.eigenvalues().tail(3) << std::endl;
/// std::cout << "Generalized eigenvectors:\n" << es.eigenvectors().rightCols(3).topRows(10) << std::endl;
///
/// return 0;
/// }
/// \endcode
// Partial specialization for GEigsMode = GEIGS_CHOLESKY
template <typename Scalar,
int SelectionRule,
typename OpType,
typename BOpType>
class SymGEigsSolver<Scalar, SelectionRule, OpType, BOpType, GEIGS_CHOLESKY> :
public SymEigsBase<Scalar, SelectionRule, SymGEigsCholeskyOp<Scalar, OpType, BOpType>, IdentityBOp>
{
private:
typedef Eigen::Index Index;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> Matrix;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector;
BOpType* m_Bop;
public:
///
/// Constructor to create a solver object.
///
/// \param op Pointer to the \f$A\f$ matrix operation object. It
/// should implement the matrix-vector multiplication operation of \f$A\f$:
/// calculating \f$Av\f$ for any vector \f$v\f$. Users could either
/// create the object from the wrapper classes such as DenseSymMatProd, or
/// define their own that implements all the public member functions
/// as in DenseSymMatProd.
/// \param Bop Pointer to the \f$B\f$ matrix operation object. It
/// represents a Cholesky decomposition of \f$B\f$, and should
/// implement the lower and upper triangular solving operations:
/// calculating \f$L^{-1}v\f$ and \f$(L')^{-1}v\f$ for any vector
/// \f$v\f$, where \f$LL'=B\f$. Users could either
/// create the object from the wrapper classes such as DenseCholesky, or
/// define their own that implements all the public member functions
/// as in DenseCholesky.
/// \param nev Number of eigenvalues requested. This should satisfy \f$1\le nev \le n-1\f$,
/// where \f$n\f$ is the size of matrix.
/// \param ncv Parameter that controls the convergence speed of the algorithm.
/// Typically a larger `ncv` means faster convergence, but it may
/// also result in greater memory use and more matrix operations
/// in each iteration. This parameter must satisfy \f$nev < ncv \le n\f$,
/// and is advised to take \f$ncv \ge 2\cdot nev\f$.
///
SymGEigsSolver(OpType* op, BOpType* Bop, Index nev, Index ncv) :
SymEigsBase<Scalar, SelectionRule, SymGEigsCholeskyOp<Scalar, OpType, BOpType>, IdentityBOp>(
new SymGEigsCholeskyOp<Scalar, OpType, BOpType>(*op, *Bop), NULL, nev, ncv),
m_Bop(Bop)
{}
/// \cond
~SymGEigsSolver()
{
// m_op contains the constructed SymGEigsCholeskyOp object
delete this->m_op;
}
Matrix eigenvectors(Index nvec) const
{
Matrix res = SymEigsBase<Scalar, SelectionRule, SymGEigsCholeskyOp<Scalar, OpType, BOpType>, IdentityBOp>::eigenvectors(nvec);
Vector tmp(res.rows());
const Index nconv = res.cols();
for (Index i = 0; i < nconv; i++)
{
m_Bop->upper_triangular_solve(&res(0, i), tmp.data());
res.col(i).noalias() = tmp;
}
return res;
}
Matrix eigenvectors() const
{
return SymGEigsSolver<Scalar, SelectionRule, OpType, BOpType, GEIGS_CHOLESKY>::eigenvectors(this->m_nev);
}
/// \endcond
};
///
/// \ingroup GEigenSolver
///
/// This class implements the generalized eigen solver for real symmetric
/// matrices in the regular inverse mode, i.e., to solve \f$Ax=\lambda Bx\f$
/// where \f$A\f$ is symmetric, and \f$B\f$ is positive definite with the operations
/// defined below.
///
/// This solver requires two matrix operation objects: one for \f$A\f$ that implements
/// the matrix multiplication \f$Av\f$, and one for \f$B\f$ that implements the
/// matrix-vector product \f$Bv\f$ and the linear equation solving operation \f$B^{-1}v\f$.
///
/// If \f$A\f$ and \f$B\f$ are stored as Eigen matrices, then the first operation
/// can be created using the DenseSymMatProd or SparseSymMatProd classes, and
/// the second operation can be created using the SparseRegularInverse class. There is no
/// wrapper class for a dense \f$B\f$ matrix since in this case the Cholesky mode
/// is always preferred. If the users need to define their own operation classes, then they
/// should implement all the public member functions as in those built-in classes.
///
/// \tparam Scalar The element type of the matrix.
/// Currently supported types are `float`, `double` and `long double`.
/// \tparam SelectionRule An enumeration value indicating the selection rule of
/// the requested eigenvalues, for example `LARGEST_MAGN`
/// to retrieve eigenvalues with the largest magnitude.
/// The full list of enumeration values can be found in
/// \ref Enumerations.
/// \tparam OpType The name of the matrix operation class for \f$A\f$. Users could either
/// use the wrapper classes such as DenseSymMatProd and
/// SparseSymMatProd, or define their
/// own that implements all the public member functions as in
/// DenseSymMatProd.
/// \tparam BOpType The name of the matrix operation class for \f$B\f$. Users could either
/// use the wrapper class SparseRegularInverse, or define their
/// own that implements all the public member functions as in
/// SparseRegularInverse.
/// \tparam GEigsMode Mode of the generalized eigen solver. In this solver
/// it is Spectra::GEIGS_REGULAR_INVERSE.
///
// Partial specialization for GEigsMode = GEIGS_REGULAR_INVERSE
template <typename Scalar,
int SelectionRule,
typename OpType,
typename BOpType>
class SymGEigsSolver<Scalar, SelectionRule, OpType, BOpType, GEIGS_REGULAR_INVERSE> :
public SymEigsBase<Scalar, SelectionRule, SymGEigsRegInvOp<Scalar, OpType, BOpType>, BOpType>
{
private:
typedef Eigen::Index Index;
public:
///
/// Constructor to create a solver object.
///
/// \param op Pointer to the \f$A\f$ matrix operation object. It
/// should implement the matrix-vector multiplication operation of \f$A\f$:
/// calculating \f$Av\f$ for any vector \f$v\f$. Users could either
/// create the object from the wrapper classes such as DenseSymMatProd, or
/// define their own that implements all the public member functions
/// as in DenseSymMatProd.
/// \param Bop Pointer to the \f$B\f$ matrix operation object. It should
/// implement the multiplication operation \f$Bv\f$ and the linear equation
/// solving operation \f$B^{-1}v\f$ for any vector \f$v\f$. Users could either
/// create the object from the wrapper class SparseRegularInverse, or
/// define their own that implements all the public member functions
/// as in SparseRegularInverse.
/// \param nev Number of eigenvalues requested. This should satisfy \f$1\le nev \le n-1\f$,
/// where \f$n\f$ is the size of matrix.
/// \param ncv Parameter that controls the convergence speed of the algorithm.
/// Typically a larger `ncv` means faster convergence, but it may
/// also result in greater memory use and more matrix operations
/// in each iteration. This parameter must satisfy \f$nev < ncv \le n\f$,
/// and is advised to take \f$ncv \ge 2\cdot nev\f$.
///
SymGEigsSolver(OpType* op, BOpType* Bop, Index nev, Index ncv) :
SymEigsBase<Scalar, SelectionRule, SymGEigsRegInvOp<Scalar, OpType, BOpType>, BOpType>(
new SymGEigsRegInvOp<Scalar, OpType, BOpType>(*op, *Bop), Bop, nev, ncv)
{}
/// \cond
~SymGEigsSolver()
{
// m_op contains the constructed SymGEigsRegInvOp object
delete this->m_op;
}
/// \endcond
};
} // namespace Spectra
#endif // SYM_GEIGS_SOLVER_H