gtsam/tests/testPreconditioner.cpp

116 lines
4.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testPreconditioner.cpp
* @brief Unit tests for Preconditioners
* @author Sungtae An
* @date Nov 6, 2014
**/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/Preconditioner.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/linear/PCGSolver.h>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
static GaussianFactorGraph createSimpleGaussianFactorGraph() {
GaussianFactorGraph fg;
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
// linearized prior on x1: c[_x1_]+x1=0 i.e. x1=-c[_x1_]
fg += JacobianFactor(2, 10*eye(2), -1.0*ones(2), unit2);
// odometry between x1 and x2: x2-x1=[0.2;-0.1]
fg += JacobianFactor(2, -10*eye(2), 0, 10*eye(2), (Vector(2) << 2.0, -1.0), unit2);
// measurement between x1 and l1: l1-x1=[0.0;0.2]
fg += JacobianFactor(2, -5*eye(2), 1, 5*eye(2), (Vector(2) << 0.0, 1.0), unit2);
// measurement between x2 and l1: l1-x2=[-0.2;0.3]
fg += JacobianFactor(0, -5*eye(2), 1, 5*eye(2), (Vector(2) << -1.0, 1.5), unit2);
return fg;
}
/* ************************************************************************* */
// Copy of BlockJacobiPreconditioner::build
std::vector<Matrix> buildBlocks( const GaussianFactorGraph &gfg, const KeyInfo &keyInfo)
{
const size_t n = keyInfo.size();
std::vector<size_t> dims_ = keyInfo.colSpec();
/* prepare the buffer of block diagonals */
std::vector<Matrix> blocks; blocks.reserve(n);
/* allocate memory for the factorization of block diagonals */
size_t nnz = 0;
for ( size_t i = 0 ; i < n ; ++i ) {
const size_t dim = dims_[i];
blocks.push_back(Matrix::Zero(dim, dim));
// nnz += (((dim)*(dim+1)) >> 1); // d*(d+1) / 2 ;
nnz += dim*dim;
}
/* compute the block diagonal by scanning over the factors */
BOOST_FOREACH ( const GaussianFactor::shared_ptr &gf, gfg ) {
if ( JacobianFactor::shared_ptr jf = boost::dynamic_pointer_cast<JacobianFactor>(gf) ) {
for ( JacobianFactor::const_iterator it = jf->begin() ; it != jf->end() ; ++it ) {
const KeyInfoEntry &entry = keyInfo.find(*it)->second;
const Matrix &Ai = jf->getA(it);
blocks[entry.index()] += (Ai.transpose() * Ai);
}
}
else if ( HessianFactor::shared_ptr hf = boost::dynamic_pointer_cast<HessianFactor>(gf) ) {
for ( HessianFactor::const_iterator it = hf->begin() ; it != hf->end() ; ++it ) {
const KeyInfoEntry &entry = keyInfo.find(*it)->second;
const Matrix &Hii = hf->info(it, it).selfadjointView();
blocks[entry.index()] += Hii;
}
}
else {
throw invalid_argument("BlockJacobiPreconditioner::build gfg contains a factor that is neither a JacobianFactor nor a HessianFactor.");
}
}
return blocks;
}
/* ************************************************************************* */
TEST( Preconditioner, buildBlocks ) {
// Create simple Gaussian factor graph and initial values
GaussianFactorGraph gfg = createSimpleGaussianFactorGraph();
Values initial;
initial.insert(0,Point2(4, 5));
initial.insert(1,Point2(0, 1));
initial.insert(2,Point2(-5, 7));
// Expected Hessian block diagonal matrices
std::map<Key, Matrix> expectedHessian =gfg.hessianBlockDiagonal();
// Actual Hessian block diagonal matrices from BlockJacobiPreconditioner::build
std::vector<Matrix> actualHessian = buildBlocks(gfg, KeyInfo(gfg));
// Compare the number of block diagonal matrices
EXPECT_LONGS_EQUAL(expectedHessian.size(), actualHessian.size());
// Compare the values of matrices
std::map<Key, Matrix>::const_iterator it1 = expectedHessian.begin();
std::vector<Matrix>::const_iterator it2 = actualHessian.begin();
for(; it1!=expectedHessian.end(); it1++, it2++)
EXPECT(assert_equal(it1->second, *it2));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */