731 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			731 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file  testNonlinearFactor.cpp
 | |
|  *  @brief Unit tests for Non-Linear Factor,
 | |
|  *  create a non linear factor graph and a values structure for it and
 | |
|  *  calculate the error for the factor.
 | |
|  *  @author Christian Potthast
 | |
|  **/
 | |
| 
 | |
| /*STL/C++*/
 | |
| #include <iostream>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| // TODO: DANGEROUS, create shared pointers
 | |
| #define GTSAM_MAGIC_GAUSSIAN 2
 | |
| 
 | |
| #include <gtsam/base/Testable.h>
 | |
| #include <gtsam/base/Matrix.h>
 | |
| #include <tests/smallExample.h>
 | |
| #include <tests/simulated2D.h>
 | |
| #include <gtsam/linear/GaussianFactor.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| 
 | |
| // Convenience for named keys
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| typedef std::shared_ptr<NonlinearFactor > shared_nlf;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, equals )
 | |
| {
 | |
|   SharedNoiseModel sigma(noiseModel::Isotropic::Sigma(2,1.0));
 | |
| 
 | |
|   // create two nonlinear2 factors
 | |
|   Point2 z3(0.,-1.);
 | |
|   simulated2D::Measurement f0(z3, sigma, X(1),L(1));
 | |
| 
 | |
|   // measurement between x2 and l1
 | |
|   Point2 z4(-1.5, -1.);
 | |
|   simulated2D::Measurement f1(z4, sigma, X(2),L(1));
 | |
| 
 | |
|   CHECK(assert_equal(f0,f0));
 | |
|   CHECK(f0.equals(f0));
 | |
|   CHECK(!f0.equals(f1));
 | |
|   CHECK(!f1.equals(f0));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, equals2 )
 | |
| {
 | |
|   // create a non linear factor graph
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
| 
 | |
|   // get two factors
 | |
|   NonlinearFactorGraph::sharedFactor f0 = fg[0], f1 = fg[1];
 | |
| 
 | |
|   CHECK(f0->equals(*f0));
 | |
|   CHECK(!f0->equals(*f1));
 | |
|   CHECK(!f1->equals(*f0));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, NonlinearFactor )
 | |
| {
 | |
|   // create a non linear factor graph
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
| 
 | |
|   // create a values structure for the non linear factor graph
 | |
|   Values cfg = createNoisyValues();
 | |
| 
 | |
|   // get the factor "f1" from the factor graph
 | |
|   NonlinearFactorGraph::sharedFactor factor = fg[0];
 | |
| 
 | |
|   // calculate the error_vector from the factor "f1"
 | |
|   // error_vector = [0.1 0.1]
 | |
|   Vector actual_e = std::dynamic_pointer_cast<NoiseModelFactor>(factor)->unwhitenedError(cfg);
 | |
|   CHECK(assert_equal(0.1*Vector::Ones(2),actual_e));
 | |
| 
 | |
|   // error = 0.5 * [1 1] * [1;1] = 1
 | |
|   double expected = 1.0;
 | |
| 
 | |
|   // calculate the error from the factor "f1"
 | |
|   double actual = factor->error(cfg);
 | |
|   DOUBLES_EQUAL(expected,actual,0.00000001);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(NonlinearFactor, Weight) {
 | |
|   // create a values structure for the non linear factor graph
 | |
|   Values values;
 | |
| 
 | |
|   // Instantiate a concrete class version of a NoiseModelFactor
 | |
|   PriorFactor<Point2> factor1(X(1), Point2(0, 0));
 | |
|   values.insert(X(1), Point2(0.1, 0.1));
 | |
| 
 | |
|   CHECK(assert_equal(1.0, factor1.weight(values)));
 | |
| 
 | |
|   // Factor with noise model
 | |
|   auto noise = noiseModel::Isotropic::Sigma(2, 0.2);
 | |
|   PriorFactor<Point2> factor2(X(2), Point2(1, 1), noise);
 | |
|   values.insert(X(2), Point2(1.1, 1.1));
 | |
| 
 | |
|   CHECK(assert_equal(1.0, factor2.weight(values)));
 | |
| 
 | |
|   Point2 estimate(3, 3), prior(1, 1);
 | |
|   double distance = (estimate - prior).norm();
 | |
| 
 | |
|   auto gaussian = noiseModel::Isotropic::Sigma(2, 0.2);
 | |
| 
 | |
|   PriorFactor<Point2> factor;
 | |
| 
 | |
|   // vector to store all the robust models in so we can test iteratively.
 | |
|   vector<noiseModel::Robust::shared_ptr> robust_models;
 | |
| 
 | |
|   // Fair noise model
 | |
|   auto fair = noiseModel::Robust::Create(
 | |
|       noiseModel::mEstimator::Fair::Create(1.3998), gaussian);
 | |
|   robust_models.push_back(fair);
 | |
| 
 | |
|   // Huber noise model
 | |
|   auto huber = noiseModel::Robust::Create(
 | |
|       noiseModel::mEstimator::Huber::Create(1.345), gaussian);
 | |
|   robust_models.push_back(huber);
 | |
| 
 | |
|   // Cauchy noise model
 | |
|   auto cauchy = noiseModel::Robust::Create(
 | |
|       noiseModel::mEstimator::Cauchy::Create(0.1), gaussian);
 | |
|   robust_models.push_back(cauchy);
 | |
| 
 | |
|   // Tukey noise model
 | |
|   auto tukey = noiseModel::Robust::Create(
 | |
|       noiseModel::mEstimator::Tukey::Create(4.6851), gaussian);
 | |
|   robust_models.push_back(tukey);
 | |
| 
 | |
|   // Welsch noise model
 | |
|   auto welsch = noiseModel::Robust::Create(
 | |
|       noiseModel::mEstimator::Welsch::Create(2.9846), gaussian);
 | |
|   robust_models.push_back(welsch);
 | |
| 
 | |
|   // Geman-McClure noise model
 | |
|   auto gm = noiseModel::Robust::Create(
 | |
|       noiseModel::mEstimator::GemanMcClure::Create(1.0), gaussian);
 | |
|   robust_models.push_back(gm);
 | |
| 
 | |
|   // DCS noise model
 | |
|   auto dcs = noiseModel::Robust::Create(
 | |
|       noiseModel::mEstimator::DCS::Create(1.0), gaussian);
 | |
|   robust_models.push_back(dcs);
 | |
| 
 | |
|   // L2WithDeadZone noise model
 | |
|   auto l2 = noiseModel::Robust::Create(
 | |
|       noiseModel::mEstimator::L2WithDeadZone::Create(1.0), gaussian);
 | |
|   robust_models.push_back(l2);
 | |
| 
 | |
|   for(auto&& model: robust_models) {
 | |
|     factor = PriorFactor<Point2>(X(3), prior, model);
 | |
|     values.clear();
 | |
|     values.insert(X(3), estimate);
 | |
|     CHECK(assert_equal(model->robust()->weight(distance), factor.weight(values)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_f1 )
 | |
| {
 | |
|   Values c = createNoisyValues();
 | |
| 
 | |
|   // Grab a non-linear factor
 | |
|   NonlinearFactorGraph nfg = createNonlinearFactorGraph();
 | |
|   NonlinearFactorGraph::sharedFactor nlf = nfg[0];
 | |
| 
 | |
|   // We linearize at noisy config from SmallExample
 | |
|   GaussianFactor::shared_ptr actual = nlf->linearize(c);
 | |
| 
 | |
|   GaussianFactorGraph lfg = createGaussianFactorGraph();
 | |
|   GaussianFactor::shared_ptr expected = lfg[0];
 | |
| 
 | |
|   CHECK(assert_equal(*expected,*actual));
 | |
| 
 | |
|   // The error |A*dx-b| approximates (h(x0+dx)-z) = -error_vector
 | |
|   // Hence i.e., b = approximates z-h(x0) = error_vector(x0)
 | |
|   //CHECK(assert_equal(nlf->error_vector(c),actual->get_b()));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_f2 )
 | |
| {
 | |
|   Values c = createNoisyValues();
 | |
| 
 | |
|   // Grab a non-linear factor
 | |
|   NonlinearFactorGraph nfg = createNonlinearFactorGraph();
 | |
|   NonlinearFactorGraph::sharedFactor nlf = nfg[1];
 | |
| 
 | |
|   // We linearize at noisy config from SmallExample
 | |
|   GaussianFactor::shared_ptr actual = nlf->linearize(c);
 | |
| 
 | |
|   GaussianFactorGraph lfg = createGaussianFactorGraph();
 | |
|   GaussianFactor::shared_ptr expected = lfg[1];
 | |
| 
 | |
|   CHECK(assert_equal(*expected,*actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_f3 )
 | |
| {
 | |
|   // Grab a non-linear factor
 | |
|   NonlinearFactorGraph nfg = createNonlinearFactorGraph();
 | |
|   NonlinearFactorGraph::sharedFactor nlf = nfg[2];
 | |
| 
 | |
|   // We linearize at noisy config from SmallExample
 | |
|   Values c = createNoisyValues();
 | |
|   GaussianFactor::shared_ptr actual = nlf->linearize(c);
 | |
| 
 | |
|   GaussianFactorGraph lfg = createGaussianFactorGraph();
 | |
|   GaussianFactor::shared_ptr expected = lfg[2];
 | |
| 
 | |
|   CHECK(assert_equal(*expected,*actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_f4 )
 | |
| {
 | |
|   // Grab a non-linear factor
 | |
|   NonlinearFactorGraph nfg = createNonlinearFactorGraph();
 | |
|   NonlinearFactorGraph::sharedFactor nlf = nfg[3];
 | |
| 
 | |
|   // We linearize at noisy config from SmallExample
 | |
|   Values c = createNoisyValues();
 | |
|   GaussianFactor::shared_ptr actual = nlf->linearize(c);
 | |
| 
 | |
|   GaussianFactorGraph lfg = createGaussianFactorGraph();
 | |
|   GaussianFactor::shared_ptr expected = lfg[3];
 | |
| 
 | |
|   CHECK(assert_equal(*expected,*actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, size )
 | |
| {
 | |
|   // create a non linear factor graph
 | |
|   NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | |
| 
 | |
|   // create a values structure for the non linear factor graph
 | |
|   Values cfg = createNoisyValues();
 | |
| 
 | |
|   // get some factors from the graph
 | |
|   NonlinearFactorGraph::sharedFactor factor1 = fg[0], factor2 = fg[1],
 | |
|       factor3 = fg[2];
 | |
| 
 | |
|   CHECK(factor1->size() == 1);
 | |
|   CHECK(factor2->size() == 2);
 | |
|   CHECK(factor3->size() == 2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_constraint1 )
 | |
| {
 | |
|   SharedDiagonal constraint = noiseModel::Constrained::MixedSigmas(Vector2(0.2,0));
 | |
| 
 | |
|   Point2 mu(1., -1.);
 | |
|   NonlinearFactorGraph::sharedFactor f0(new simulated2D::Prior(mu, constraint, X(1)));
 | |
| 
 | |
|   Values config;
 | |
|   config.insert(X(1), Point2(1.0, 2.0));
 | |
|   GaussianFactor::shared_ptr actual = f0->linearize(config);
 | |
| 
 | |
|   // create expected
 | |
|   Vector2 b(0., -3.);
 | |
|   JacobianFactor expected(X(1), (Matrix(2, 2) << 5.0, 0.0, 0.0, 1.0).finished(), b,
 | |
|     noiseModel::Constrained::MixedSigmas(Vector2(1,0)));
 | |
|   CHECK(assert_equal((const GaussianFactor&)expected, *actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, linearize_constraint2 )
 | |
| {
 | |
|   SharedDiagonal constraint = noiseModel::Constrained::MixedSigmas(Vector2(0.2,0));
 | |
| 
 | |
|   Point2 z3(1.,-1.);
 | |
|   simulated2D::Measurement f0(z3, constraint, X(1),L(1));
 | |
| 
 | |
|   Values config;
 | |
|   config.insert(X(1), Point2(1.0, 2.0));
 | |
|   config.insert(L(1), Point2(5.0, 4.0));
 | |
|   GaussianFactor::shared_ptr actual = f0.linearize(config);
 | |
| 
 | |
|   // create expected
 | |
|   Matrix2 A; A << 5.0, 0.0, 0.0, 1.0;
 | |
|   Vector2 b(-15., -3.);
 | |
|   JacobianFactor expected(X(1), -1*A, L(1), A, b,
 | |
|     noiseModel::Constrained::MixedSigmas(Vector2(1,0)));
 | |
|   CHECK(assert_equal((const GaussianFactor&)expected, *actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, cloneWithNewNoiseModel )
 | |
| {
 | |
|   // create original factor
 | |
|   double sigma1 = 0.1;
 | |
|   NonlinearFactorGraph nfg = example::nonlinearFactorGraphWithGivenSigma(sigma1);
 | |
| 
 | |
|   // create expected
 | |
|   double sigma2 = 10;
 | |
|   NonlinearFactorGraph expected = example::nonlinearFactorGraphWithGivenSigma(sigma2);
 | |
| 
 | |
|   // create actual
 | |
|   NonlinearFactorGraph actual;
 | |
|   SharedNoiseModel noise2 = noiseModel::Isotropic::Sigma(2,sigma2);
 | |
|   actual.push_back(nfg.at<NoiseModelFactor>(0)->cloneWithNewNoiseModel(noise2));
 | |
| 
 | |
|   // check it's all good
 | |
|   CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| class TestFactor1 : public NoiseModelFactor1<double> {
 | |
|   static_assert(std::is_same<Base, NoiseModelFactor>::value, "Base type wrong");
 | |
|   static_assert(std::is_same<This, NoiseModelFactor1<double>>::value,
 | |
|                 "This type wrong");
 | |
| 
 | |
|  public:
 | |
|   typedef NoiseModelFactor1<double> Base;
 | |
| 
 | |
|   // Provide access to the Matrix& version of evaluateError:
 | |
|   using Base::evaluateError;
 | |
| 
 | |
|   TestFactor1() : Base(noiseModel::Diagonal::Sigmas(Vector1(2.0)), L(1)) {}
 | |
| 
 | |
|   // Provide access to the Matrix& version of evaluateError:
 | |
|   using Base::NoiseModelFactor1;  // inherit constructors
 | |
| 
 | |
|   Vector evaluateError(const double& x1, OptionalMatrixType H1) const override {
 | |
|     if (H1) *H1 = (Matrix(1, 1) << 1.0).finished();
 | |
|     return (Vector(1) << x1).finished();
 | |
|   }
 | |
| 
 | |
|   gtsam::NonlinearFactor::shared_ptr clone() const override {
 | |
|     return std::static_pointer_cast<gtsam::NonlinearFactor>(
 | |
|         gtsam::NonlinearFactor::shared_ptr(new TestFactor1(*this)));
 | |
|   }
 | |
| };
 | |
| 
 | |
| /* ************************************ */
 | |
| TEST(NonlinearFactor, NoiseModelFactor1) {
 | |
|   TestFactor1 tf;
 | |
|   Values tv;
 | |
|   tv.insert(L(1), double((1.0)));
 | |
|   EXPECT(assert_equal((Vector(1) << 1.0).finished(), tf.unwhitenedError(tv)));
 | |
|   DOUBLES_EQUAL(0.25 / 2.0, tf.error(tv), 1e-9);
 | |
|   JacobianFactor jf(
 | |
|       *std::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
 | |
|   LONGS_EQUAL((long)L(1), (long)jf.keys()[0]);
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 0.5).finished(),
 | |
|                       jf.getA(jf.begin())));
 | |
|   EXPECT(assert_equal((Vector)(Vector(1) << -0.5).finished(), jf.getb()));
 | |
| 
 | |
|   // Test all functions/types for backwards compatibility
 | |
|   static_assert(std::is_same<TestFactor1::X, double>::value,
 | |
|                 "X type incorrect");
 | |
|   EXPECT(assert_equal(tf.key(), L(1)));
 | |
|   std::vector<Matrix> H = {Matrix()};
 | |
|   EXPECT(assert_equal(Vector1(1.0), tf.unwhitenedError(tv, H)));
 | |
| 
 | |
|   // Test constructors
 | |
|   TestFactor1 tf2(noiseModel::Unit::Create(1), L(1));
 | |
|   TestFactor1 tf3(noiseModel::Unit::Create(1), {L(1)});
 | |
|   TestFactor1 tf4(noiseModel::Unit::Create(1), gtsam::Symbol('L', 1));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| class TestFactor4 : public NoiseModelFactor4<double, double, double, double> {
 | |
|   static_assert(std::is_same<Base, NoiseModelFactor>::value, "Base type wrong");
 | |
|   static_assert(
 | |
|       std::is_same<This,
 | |
|                    NoiseModelFactor4<double, double, double, double>>::value,
 | |
|       "This type wrong");
 | |
| 
 | |
|  public:
 | |
|   typedef NoiseModelFactor4<double, double, double, double> Base;
 | |
| 
 | |
|   // Provide access to the Matrix& version of evaluateError:
 | |
|   using Base::evaluateError;
 | |
| 
 | |
|   TestFactor4() : Base(noiseModel::Diagonal::Sigmas((Vector(1) << 2.0).finished()), X(1), X(2), X(3), X(4)) {}
 | |
| 
 | |
|   // Provide access to the Matrix& version of evaluateError:
 | |
|   using Base::NoiseModelFactor4;  // inherit constructors
 | |
| 
 | |
|   Vector
 | |
|     evaluateError(const double& x1, const double& x2, const double& x3, const double& x4,
 | |
|         OptionalMatrixType H1, OptionalMatrixType H2,
 | |
|         OptionalMatrixType H3, OptionalMatrixType H4) const override {
 | |
|     if(H1) {
 | |
|       *H1 = (Matrix(1, 1) << 1.0).finished();
 | |
|       *H2 = (Matrix(1, 1) << 2.0).finished();
 | |
|       *H3 = (Matrix(1, 1) << 3.0).finished();
 | |
|       *H4 = (Matrix(1, 1) << 4.0).finished();
 | |
|     }
 | |
|     return (Vector(1) << x1 + 2.0 * x2 + 3.0 * x3 + 4.0 * x4).finished();
 | |
|   }
 | |
| 
 | |
|   gtsam::NonlinearFactor::shared_ptr clone() const override {
 | |
|     return std::static_pointer_cast<gtsam::NonlinearFactor>(
 | |
|         gtsam::NonlinearFactor::shared_ptr(new TestFactor4(*this))); }
 | |
| };
 | |
| 
 | |
| /* ************************************ */
 | |
| TEST(NonlinearFactor, NoiseModelFactor4) {
 | |
|   TestFactor4 tf;
 | |
|   Values tv;
 | |
|   tv.insert(X(1), double((1.0)));
 | |
|   tv.insert(X(2), double((2.0)));
 | |
|   tv.insert(X(3), double((3.0)));
 | |
|   tv.insert(X(4), double((4.0)));
 | |
|   EXPECT(assert_equal((Vector(1) << 30.0).finished(), tf.unwhitenedError(tv)));
 | |
|   DOUBLES_EQUAL(0.5 * 30.0 * 30.0 / 4.0, tf.error(tv), 1e-9);
 | |
|   JacobianFactor jf(*std::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
 | |
|   LONGS_EQUAL((long)X(1), (long)jf.keys()[0]);
 | |
|   LONGS_EQUAL((long)X(2), (long)jf.keys()[1]);
 | |
|   LONGS_EQUAL((long)X(3), (long)jf.keys()[2]);
 | |
|   LONGS_EQUAL((long)X(4), (long)jf.keys()[3]);
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 0.5).finished(), jf.getA(jf.begin())));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.0).finished(), jf.getA(jf.begin()+1)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.5).finished(), jf.getA(jf.begin()+2)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.0).finished(), jf.getA(jf.begin()+3)));
 | |
|   EXPECT(assert_equal((Vector)(Vector(1) << 0.5 * -30.).finished(), jf.getb()));
 | |
| 
 | |
|   // Test all functions/types for backwards compatibility
 | |
|   static_assert(std::is_same<TestFactor4::X1, double>::value,
 | |
|                 "X1 type incorrect");
 | |
|   static_assert(std::is_same<TestFactor4::X2, double>::value,
 | |
|                 "X2 type incorrect");
 | |
|   static_assert(std::is_same<TestFactor4::X3, double>::value,
 | |
|                 "X3 type incorrect");
 | |
|   static_assert(std::is_same<TestFactor4::X4, double>::value,
 | |
|                 "X4 type incorrect");
 | |
|   EXPECT(assert_equal(tf.key1(), X(1)));
 | |
|   EXPECT(assert_equal(tf.key2(), X(2)));
 | |
|   EXPECT(assert_equal(tf.key3(), X(3)));
 | |
|   EXPECT(assert_equal(tf.key4(), X(4)));
 | |
|   std::vector<Matrix> H = {Matrix(), Matrix(), Matrix(), Matrix()};
 | |
|   EXPECT(assert_equal(Vector1(30.0), tf.unwhitenedError(tv, H)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.).finished(), H.at(0)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.).finished(), H.at(1)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 3.).finished(), H.at(2)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 4.).finished(), H.at(3)));
 | |
| 
 | |
|   // And test "forward compatibility" using `key<N>` and `ValueType<N>` too
 | |
|   static_assert(std::is_same<TestFactor4::ValueType<1>, double>::value,
 | |
|                 "ValueType<1> type incorrect");
 | |
|   static_assert(std::is_same<TestFactor4::ValueType<2>, double>::value,
 | |
|                 "ValueType<2> type incorrect");
 | |
|   static_assert(std::is_same<TestFactor4::ValueType<3>, double>::value,
 | |
|                 "ValueType<3> type incorrect");
 | |
|   static_assert(std::is_same<TestFactor4::ValueType<4>, double>::value,
 | |
|                 "ValueType<4> type incorrect");
 | |
|   EXPECT(assert_equal(tf.key<1>(), X(1)));
 | |
|   EXPECT(assert_equal(tf.key<2>(), X(2)));
 | |
|   EXPECT(assert_equal(tf.key<3>(), X(3)));
 | |
|   EXPECT(assert_equal(tf.key<4>(), X(4)));
 | |
| 
 | |
|   // Test constructors
 | |
|   TestFactor4 tf2(noiseModel::Unit::Create(1), L(1), L(2), L(3), L(4));
 | |
|   TestFactor4 tf3(noiseModel::Unit::Create(1), {L(1), L(2), L(3), L(4)});
 | |
|   TestFactor4 tf4(noiseModel::Unit::Create(1),
 | |
|                   std::array<Key, 4>{L(1), L(2), L(3), L(4)});
 | |
|   std::vector<Key> keys = {L(1), L(2), L(3), L(4)};
 | |
|   TestFactor4 tf5(noiseModel::Unit::Create(1), keys);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| class TestFactor5 : public NoiseModelFactor5<double, double, double, double, double> {
 | |
| public:
 | |
|   typedef NoiseModelFactor5<double, double, double, double, double> Base;
 | |
| 
 | |
|   // Provide access to the Matrix& version of evaluateError:
 | |
|   using Base::evaluateError;
 | |
| 
 | |
|   TestFactor5() : Base(noiseModel::Diagonal::Sigmas((Vector(1) << 2.0).finished()), X(1), X(2), X(3), X(4), X(5)) {}
 | |
| 
 | |
|   Vector
 | |
|     evaluateError(const X1& x1, const X2& x2, const X3& x3, const X4& x4, const X5& x5,
 | |
|         OptionalMatrixType H1, OptionalMatrixType H2, OptionalMatrixType H3, 
 | |
| 		OptionalMatrixType H4, OptionalMatrixType H5) const override {
 | |
|     if(H1) {
 | |
|       *H1 = (Matrix(1, 1) << 1.0).finished();
 | |
|       *H2 = (Matrix(1, 1) << 2.0).finished();
 | |
|       *H3 = (Matrix(1, 1) << 3.0).finished();
 | |
|       *H4 = (Matrix(1, 1) << 4.0).finished();
 | |
|       *H5 = (Matrix(1, 1) << 5.0).finished();
 | |
|     }
 | |
|     return (Vector(1) << x1 + 2.0 * x2 + 3.0 * x3 + 4.0 * x4 + 5.0 * x5)
 | |
|         .finished();
 | |
|   }
 | |
| };
 | |
| 
 | |
| /* ************************************ */
 | |
| TEST(NonlinearFactor, NoiseModelFactor5) {
 | |
|   TestFactor5 tf;
 | |
|   Values tv;
 | |
|   tv.insert(X(1), double((1.0)));
 | |
|   tv.insert(X(2), double((2.0)));
 | |
|   tv.insert(X(3), double((3.0)));
 | |
|   tv.insert(X(4), double((4.0)));
 | |
|   tv.insert(X(5), double((5.0)));
 | |
|   EXPECT(assert_equal((Vector(1) << 55.0).finished(), tf.unwhitenedError(tv)));
 | |
|   DOUBLES_EQUAL(0.5 * 55.0 * 55.0 / 4.0, tf.error(tv), 1e-9);
 | |
|   JacobianFactor jf(*std::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
 | |
|   LONGS_EQUAL((long)X(1), (long)jf.keys()[0]);
 | |
|   LONGS_EQUAL((long)X(2), (long)jf.keys()[1]);
 | |
|   LONGS_EQUAL((long)X(3), (long)jf.keys()[2]);
 | |
|   LONGS_EQUAL((long)X(4), (long)jf.keys()[3]);
 | |
|   LONGS_EQUAL((long)X(5), (long)jf.keys()[4]);
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 0.5).finished(), jf.getA(jf.begin())));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.0).finished(), jf.getA(jf.begin()+1)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.5).finished(), jf.getA(jf.begin()+2)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.0).finished(), jf.getA(jf.begin()+3)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.5).finished(), jf.getA(jf.begin()+4)));
 | |
|   EXPECT(assert_equal((Vector)(Vector(1) << 0.5 * -55.).finished(), jf.getb()));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| class TestFactor6 : public NoiseModelFactor6<double, double, double, double, double, double> {
 | |
| public:
 | |
|   typedef NoiseModelFactor6<double, double, double, double, double, double> Base;
 | |
| 
 | |
|   // Provide access to the Matrix& version of evaluateError:
 | |
|   using Base::evaluateError;
 | |
| 
 | |
|   TestFactor6() : Base(noiseModel::Diagonal::Sigmas((Vector(1) << 2.0).finished()), X(1), X(2), X(3), X(4), X(5), X(6)) {}
 | |
| 
 | |
|   Vector
 | |
|     evaluateError(const X1& x1, const X2& x2, const X3& x3, const X4& x4, const X5& x5, const X6& x6,
 | |
|         OptionalMatrixType H1, OptionalMatrixType H2, OptionalMatrixType H3, OptionalMatrixType H4, 
 | |
| 		OptionalMatrixType H5, OptionalMatrixType H6) const override {
 | |
|     if(H1) {
 | |
|       *H1 = (Matrix(1, 1) << 1.0).finished();
 | |
|       *H2 = (Matrix(1, 1) << 2.0).finished();
 | |
|       *H3 = (Matrix(1, 1) << 3.0).finished();
 | |
|       *H4 = (Matrix(1, 1) << 4.0).finished();
 | |
|       *H5 = (Matrix(1, 1) << 5.0).finished();
 | |
|       *H6 = (Matrix(1, 1) << 6.0).finished();
 | |
|     }
 | |
|     return (Vector(1) << x1 + 2.0 * x2 + 3.0 * x3 + 4.0 * x4 + 5.0 * x5 +
 | |
|                              6.0 * x6)
 | |
|         .finished();
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| /* ************************************ */
 | |
| TEST(NonlinearFactor, NoiseModelFactor6) {
 | |
|   TestFactor6 tf;
 | |
|   Values tv;
 | |
|   tv.insert(X(1), double((1.0)));
 | |
|   tv.insert(X(2), double((2.0)));
 | |
|   tv.insert(X(3), double((3.0)));
 | |
|   tv.insert(X(4), double((4.0)));
 | |
|   tv.insert(X(5), double((5.0)));
 | |
|   tv.insert(X(6), double((6.0)));
 | |
|   EXPECT(assert_equal((Vector(1) << 91.0).finished(), tf.unwhitenedError(tv)));
 | |
|   DOUBLES_EQUAL(0.5 * 91.0 * 91.0 / 4.0, tf.error(tv), 1e-9);
 | |
|   JacobianFactor jf(*std::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
 | |
|   LONGS_EQUAL((long)X(1), (long)jf.keys()[0]);
 | |
|   LONGS_EQUAL((long)X(2), (long)jf.keys()[1]);
 | |
|   LONGS_EQUAL((long)X(3), (long)jf.keys()[2]);
 | |
|   LONGS_EQUAL((long)X(4), (long)jf.keys()[3]);
 | |
|   LONGS_EQUAL((long)X(5), (long)jf.keys()[4]);
 | |
|   LONGS_EQUAL((long)X(6), (long)jf.keys()[5]);
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 0.5).finished(), jf.getA(jf.begin())));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.0).finished(), jf.getA(jf.begin()+1)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.5).finished(), jf.getA(jf.begin()+2)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.0).finished(), jf.getA(jf.begin()+3)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.5).finished(), jf.getA(jf.begin()+4)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 3.0).finished(), jf.getA(jf.begin()+5)));
 | |
|   EXPECT(assert_equal((Vector)(Vector(1) << 0.5 * -91.).finished(), jf.getb()));
 | |
| 
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| class TestFactorN : public NoiseModelFactorN<double, double, double, double> {
 | |
| public:
 | |
|   typedef NoiseModelFactorN<double, double, double, double> Base;
 | |
| 
 | |
|   // Provide access to the Matrix& version of evaluateError:
 | |
|   using Base::evaluateError;
 | |
| 
 | |
|   using Type1 = ValueType<1>;  // Test that we can use the ValueType<> template
 | |
| 
 | |
|   TestFactorN() : Base(noiseModel::Diagonal::Sigmas((Vector(1) << 2.0).finished()), X(1), X(2), X(3), X(4)) {}
 | |
| 
 | |
|   Vector
 | |
|     evaluateError(const double& x1, const double& x2, const double& x3, const double& x4,
 | |
|         OptionalMatrixType H1, OptionalMatrixType H2,
 | |
|         OptionalMatrixType H3, OptionalMatrixType H4) const override {
 | |
|     if (H1) *H1 = (Matrix(1, 1) << 1.0).finished();
 | |
|     if (H2) *H2 = (Matrix(1, 1) << 2.0).finished();
 | |
|     if (H3) *H3 = (Matrix(1, 1) << 3.0).finished();
 | |
|     if (H4) *H4 = (Matrix(1, 1) << 4.0).finished();
 | |
|     return (Vector(1) << x1 + 2.0 * x2 + 3.0 * x3 + 4.0 * x4).finished();
 | |
|   }
 | |
| 
 | |
|   Key key1() const { return key<1>(); }  // Test that we can use key<> template
 | |
| };
 | |
| 
 | |
| /* ************************************ */
 | |
| TEST(NonlinearFactor, NoiseModelFactorN) {
 | |
|   TestFactorN tf;
 | |
|   Values tv;
 | |
|   tv.insert(X(1), double((1.0)));
 | |
|   tv.insert(X(2), double((2.0)));
 | |
|   tv.insert(X(3), double((3.0)));
 | |
|   tv.insert(X(4), double((4.0)));
 | |
|   EXPECT(assert_equal((Vector(1) << 30.0).finished(), tf.unwhitenedError(tv)));
 | |
|   DOUBLES_EQUAL(0.5 * 30.0 * 30.0 / 4.0, tf.error(tv), 1e-9);
 | |
|   JacobianFactor jf(*std::dynamic_pointer_cast<JacobianFactor>(tf.linearize(tv)));
 | |
|   LONGS_EQUAL((long)X(1), (long)jf.keys()[0]);
 | |
|   LONGS_EQUAL((long)X(2), (long)jf.keys()[1]);
 | |
|   LONGS_EQUAL((long)X(3), (long)jf.keys()[2]);
 | |
|   LONGS_EQUAL((long)X(4), (long)jf.keys()[3]);
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 0.5).finished(), jf.getA(jf.begin())));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.0).finished(), jf.getA(jf.begin()+1)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 1.5).finished(), jf.getA(jf.begin()+2)));
 | |
|   EXPECT(assert_equal((Matrix)(Matrix(1, 1) << 2.0).finished(), jf.getA(jf.begin()+3)));
 | |
|   EXPECT(assert_equal((Vector)(Vector(1) << -0.5 * 30.).finished(), jf.getb()));
 | |
| 
 | |
|   // Test all evaluateError argument overloads to ensure backward compatibility
 | |
|   Matrix H1_expected, H2_expected, H3_expected, H4_expected;
 | |
|   Vector e_expected = tf.evaluateError(9, 8, 7, 6, H1_expected, H2_expected,
 | |
|                                        H3_expected, H4_expected);
 | |
| 
 | |
|   std::unique_ptr<NoiseModelFactorN<double, double, double, double>> base_ptr(
 | |
|       new TestFactorN(tf));
 | |
|   Matrix H1, H2, H3, H4;
 | |
|   EXPECT(assert_equal(e_expected, base_ptr->evaluateError(9, 8, 7, 6)));
 | |
|   EXPECT(assert_equal(e_expected, base_ptr->evaluateError(9, 8, 7, 6, H1)));
 | |
|   EXPECT(assert_equal(H1_expected, H1));
 | |
|   EXPECT(assert_equal(e_expected,  //
 | |
|                       base_ptr->evaluateError(9, 8, 7, 6, H1, H2)));
 | |
|   EXPECT(assert_equal(H1_expected, H1));
 | |
|   EXPECT(assert_equal(H2_expected, H2));
 | |
|   EXPECT(assert_equal(e_expected,
 | |
|                       base_ptr->evaluateError(9, 8, 7, 6, H1, H2, H3)));
 | |
|   EXPECT(assert_equal(H1_expected, H1));
 | |
|   EXPECT(assert_equal(H2_expected, H2));
 | |
|   EXPECT(assert_equal(H3_expected, H3));
 | |
|   EXPECT(assert_equal(e_expected,
 | |
|                       base_ptr->evaluateError(9, 8, 7, 6, H1, H2, H3, H4)));
 | |
|   EXPECT(assert_equal(H1_expected, H1));
 | |
|   EXPECT(assert_equal(H2_expected, H2));
 | |
|   EXPECT(assert_equal(H3_expected, H3));
 | |
|   EXPECT(assert_equal(H4_expected, H4));
 | |
| 
 | |
|   // Test all functions/types for backwards compatibility
 | |
| 
 | |
|   static_assert(std::is_same<TestFactor4::X1, double>::value,
 | |
|                 "X1 type incorrect");
 | |
|   EXPECT(assert_equal(tf.key3(), X(3)));
 | |
| 
 | |
| 
 | |
|   // Test using `key<N>` and `ValueType<N>`
 | |
|   static_assert(std::is_same<TestFactorN::ValueType<1>, double>::value,
 | |
|                 "ValueType<1> type incorrect");
 | |
|   static_assert(std::is_same<TestFactorN::ValueType<2>, double>::value,
 | |
|                 "ValueType<2> type incorrect");
 | |
|   static_assert(std::is_same<TestFactorN::ValueType<3>, double>::value,
 | |
|                 "ValueType<3> type incorrect");
 | |
|   static_assert(std::is_same<TestFactorN::ValueType<4>, double>::value,
 | |
|                 "ValueType<4> type incorrect");
 | |
|   static_assert(std::is_same<TestFactorN::Type1, double>::value,
 | |
|                 "TestFactorN::Type1 type incorrect");
 | |
|   EXPECT(assert_equal(tf.key<1>(), X(1)));
 | |
|   EXPECT(assert_equal(tf.key<2>(), X(2)));
 | |
|   EXPECT(assert_equal(tf.key<3>(), X(3)));
 | |
|   EXPECT(assert_equal(tf.key<4>(), X(4)));
 | |
|   EXPECT(assert_equal(tf.key1(), X(1)));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( NonlinearFactor, clone_rekey )
 | |
| {
 | |
|   shared_nlf init(new TestFactor4());
 | |
|   EXPECT_LONGS_EQUAL((long)X(1), (long)init->keys()[0]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(2), (long)init->keys()[1]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(3), (long)init->keys()[2]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(4), (long)init->keys()[3]);
 | |
| 
 | |
|   // Standard clone
 | |
|   shared_nlf actClone = init->clone();
 | |
|   EXPECT(actClone.get() != init.get()); // Ensure different pointers
 | |
|   EXPECT(assert_equal(*init, *actClone));
 | |
| 
 | |
|   // Re-key factor - clones with different keys
 | |
|   KeyVector new_keys {X(5),X(6),X(7),X(8)};
 | |
|   shared_nlf actRekey = init->rekey(new_keys);
 | |
|   EXPECT(actRekey.get() != init.get()); // Ensure different pointers
 | |
| 
 | |
|   // Ensure init is unchanged
 | |
|   EXPECT_LONGS_EQUAL((long)X(1), (long)init->keys()[0]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(2), (long)init->keys()[1]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(3), (long)init->keys()[2]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(4), (long)init->keys()[3]);
 | |
| 
 | |
|   // Check new keys
 | |
|   EXPECT_LONGS_EQUAL((long)X(5), (long)actRekey->keys()[0]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(6), (long)actRekey->keys()[1]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(7), (long)actRekey->keys()[2]);
 | |
|   EXPECT_LONGS_EQUAL((long)X(8), (long)actRekey->keys()[3]);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | |
| /* ************************************************************************* */
 |