552 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			552 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file    GaussianFactorGraph.cpp
 | |
|  * @brief   Linear Factor Graph where all factors are Gaussians
 | |
|  * @author  Kai Ni
 | |
|  * @author  Christian Potthast
 | |
|  */
 | |
| 
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| #include <boost/numeric/ublas/lu.hpp>
 | |
| #include <boost/numeric/ublas/io.hpp>
 | |
| #include <boost/assign/std/list.hpp> // for operator += in Ordering
 | |
| 
 | |
| #include "GaussianFactorGraph.h"
 | |
| #include "GaussianFactorSet.h"
 | |
| #include "FactorGraph-inl.h"
 | |
| #include "inference-inl.h"
 | |
| #include "iterative.h"
 | |
| //#include "GaussianJunctionTree.h"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace boost::assign;
 | |
| 
 | |
| // trick from some reading group
 | |
| #define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| // Explicitly instantiate so we don't have to include everywhere
 | |
| template class FactorGraph<GaussianFactor>;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| GaussianFactorGraph::GaussianFactorGraph(const GaussianBayesNet& CBN) :
 | |
| 	FactorGraph<GaussianFactor> (CBN) {
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| double GaussianFactorGraph::error(const VectorConfig& x) const {
 | |
| 	double total_error = 0.;
 | |
| 	BOOST_FOREACH(sharedFactor factor,factors_)
 | |
| 		total_error += factor->error(x);
 | |
| 	return total_error;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Errors GaussianFactorGraph::errors(const VectorConfig& x) const {
 | |
| 	return *errors_(x);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| boost::shared_ptr<Errors> GaussianFactorGraph::errors_(const VectorConfig& x) const {
 | |
| 	boost::shared_ptr<Errors> e(new Errors);
 | |
| 	BOOST_FOREACH(const sharedFactor& factor,factors_)
 | |
| 		e->push_back(factor->error_vector(x));
 | |
| 	return e;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Errors GaussianFactorGraph::operator*(const VectorConfig& x) const {
 | |
| 	Errors e;
 | |
| 	BOOST_FOREACH(const sharedFactor& Ai,factors_)
 | |
| 		e.push_back((*Ai)*x);
 | |
| 	return e;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void GaussianFactorGraph::multiplyInPlace(const VectorConfig& x, Errors& e) const {
 | |
| 	multiplyInPlace(x,e.begin());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void GaussianFactorGraph::multiplyInPlace(const VectorConfig& x,
 | |
| 		const Errors::iterator& e) const {
 | |
| 	Errors::iterator ei = e;
 | |
| 	BOOST_FOREACH(const sharedFactor& Ai,factors_) {
 | |
| 		*ei = (*Ai)*x;
 | |
| 		ei++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| VectorConfig GaussianFactorGraph::operator^(const Errors& e) const {
 | |
| 	VectorConfig x;
 | |
| 	// For each factor add the gradient contribution
 | |
| 	Errors::const_iterator it = e.begin();
 | |
| 	BOOST_FOREACH(const sharedFactor& Ai,factors_) {
 | |
| 		VectorConfig xi = (*Ai)^(*(it++));
 | |
| 		x.insertAdd(xi);
 | |
| 	}
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // x += alpha*A'*e
 | |
| void GaussianFactorGraph::transposeMultiplyAdd(double alpha, const Errors& e,
 | |
| 		VectorConfig& x) const {
 | |
| 	// For each factor add the gradient contribution
 | |
| 	Errors::const_iterator ei = e.begin();
 | |
| 	BOOST_FOREACH(const sharedFactor& Ai,factors_)
 | |
| 		Ai->transposeMultiplyAdd(alpha,*(ei++),x);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| VectorConfig GaussianFactorGraph::gradient(const VectorConfig& x) const {
 | |
| 	// It is crucial for performance to make a zero-valued clone of x
 | |
| 	VectorConfig g = VectorConfig::zero(x);
 | |
| 	transposeMultiplyAdd(1.0, errors(x), g);
 | |
| 	return g;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| set<Symbol> GaussianFactorGraph::find_separator(const Symbol& key) const
 | |
| {
 | |
| 	set<Symbol> separator;
 | |
| 	BOOST_FOREACH(const sharedFactor& factor,factors_)
 | |
| 		factor->tally_separator(key,separator);
 | |
| 
 | |
| 	return separator;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| GaussianConditional::shared_ptr
 | |
| GaussianFactorGraph::eliminateOne(const Symbol& key, bool enableJoinFactor) {
 | |
| 	if (enableJoinFactor)
 | |
| 		return gtsam::eliminateOne<GaussianFactor,GaussianConditional>(*this, key);
 | |
| 	else
 | |
| 		return eliminateOneMatrixJoin(key);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| template <class Factors>
 | |
| std::pair<Matrix, SharedDiagonal> combineFactorsAndCreateMatrix(
 | |
| 		const Factors& factors,
 | |
| 		const Ordering& order, const Dimensions& dimensions) {
 | |
| 	// find the size of Ab
 | |
| 	size_t m = 0, n = 1;
 | |
| 
 | |
| 	// number of rows
 | |
| 	BOOST_FOREACH(GaussianFactor::shared_ptr factor, factors) {
 | |
| 		m += factor->numberOfRows();
 | |
| 	}
 | |
| 
 | |
| 	// find the number of columns
 | |
| 	BOOST_FOREACH(const Symbol& key, order) {
 | |
| 		n += dimensions.at(key);
 | |
| 	}
 | |
| 
 | |
| 	// Allocate the new matrix
 | |
| 	Matrix Ab = zeros(m,n);
 | |
| 
 | |
| 	// Allocate a sigmas vector to make into a full noisemodel
 | |
| 	Vector sigmas = ones(m);
 | |
| 
 | |
| 	// copy data over
 | |
| 	size_t cur_m = 0;
 | |
| 	bool constrained = false;
 | |
| 	bool unit = true;
 | |
| 	BOOST_FOREACH(GaussianFactor::shared_ptr factor, factors) {
 | |
| 		// loop through ordering
 | |
| 		size_t cur_n = 0;
 | |
| 		BOOST_FOREACH(const Symbol& key, order) {
 | |
| 			// copy over matrix if it exists
 | |
| 			if (factor->involves(key)) {
 | |
| 				insertSub(Ab, factor->get_A(key), cur_m, cur_n);
 | |
| 			}
 | |
| 			// move onto next element
 | |
| 			cur_n += dimensions.at(key);
 | |
| 		}
 | |
| 		// copy over the RHS
 | |
| 		insertColumn(Ab, factor->get_b(), cur_m, n-1);
 | |
| 
 | |
| 		// check if the model is unit already
 | |
| 		if (!boost::shared_dynamic_cast<noiseModel::Unit>(factor->get_model())) {
 | |
| 			unit = false;
 | |
| 			const Vector& subsigmas = factor->get_model()->sigmas();
 | |
| 			subInsert(sigmas, subsigmas, cur_m);
 | |
| 
 | |
| 			// check for constraint
 | |
| 			if (boost::shared_dynamic_cast<noiseModel::Constrained>(factor->get_model()))
 | |
| 				constrained = true;
 | |
| 		}
 | |
| 
 | |
| 		// move to next row
 | |
| 		cur_m += factor->numberOfRows();
 | |
| 	}
 | |
| 
 | |
| 	// combine the noisemodels
 | |
| 	SharedDiagonal model;
 | |
| 	if (unit) {
 | |
| 		model = noiseModel::Unit::Create(m);
 | |
| 	} else if (constrained) {
 | |
| 		model = noiseModel::Constrained::MixedSigmas(sigmas);
 | |
| 	} else {
 | |
| 		model = noiseModel::Diagonal::Sigmas(sigmas);
 | |
| 	}
 | |
| 	return make_pair(Ab, model);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| GaussianConditional::shared_ptr
 | |
| GaussianFactorGraph::eliminateOneMatrixJoin(const Symbol& key) {
 | |
| 	// find and remove all factors connected to key
 | |
| 	vector<GaussianFactor::shared_ptr> factors = findAndRemoveFactors(key);
 | |
| 
 | |
| 	// Collect all dimensions as well as the set of separator keys
 | |
| 	set<Symbol> separator;
 | |
| 	Dimensions dimensions;
 | |
| 	BOOST_FOREACH(const sharedFactor& factor, factors) {
 | |
| 		Dimensions factor_dim = factor->dimensions();
 | |
| 		dimensions.insert(factor_dim.begin(), factor_dim.end());
 | |
| 		BOOST_FOREACH(const Symbol& k, factor->keys())
 | |
| 			if (!k.equals(key))
 | |
| 				separator.insert(k);
 | |
| 	}
 | |
| 
 | |
| 	// add the keys to the rendering
 | |
| 	Ordering render; render += key;
 | |
| 	BOOST_FOREACH(const Symbol& k, separator)
 | |
| 			if (k != key) render += k;
 | |
| 
 | |
| 	// combine the factors to get a noisemodel and a combined matrix
 | |
| 	Matrix Ab; SharedDiagonal model;
 | |
| 
 | |
| 	boost::tie(Ab, model) =	combineFactorsAndCreateMatrix(factors,render,dimensions);
 | |
| 
 | |
| 	// eliminate that joint factor
 | |
| 	GaussianFactor::shared_ptr factor;
 | |
| 	GaussianConditional::shared_ptr conditional;
 | |
| 	render.pop_front();
 | |
| 	boost::tie(conditional, factor) =
 | |
| 			GaussianFactor::eliminateMatrix(Ab, model, key, render, dimensions);
 | |
| 
 | |
| 	// add new factor on separator back into the graph
 | |
| 	if (!factor->empty()) push_back(factor);
 | |
| 
 | |
| 	// return the conditional Gaussian
 | |
| 	return conditional;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| GaussianBayesNet
 | |
| GaussianFactorGraph::eliminate(const Ordering& ordering, bool enableJoinFactor)
 | |
| {
 | |
| 	GaussianBayesNet chordalBayesNet; // empty
 | |
| 	BOOST_FOREACH(const Symbol& key, ordering) {
 | |
| 		GaussianConditional::shared_ptr cg = eliminateOne(key, enableJoinFactor);
 | |
| 		chordalBayesNet.push_back(cg);
 | |
| 	}
 | |
| 	return chordalBayesNet;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| GaussianBayesNet
 | |
| GaussianFactorGraph::eliminateFrontals(const Ordering& frontals)
 | |
| {
 | |
| 	// find the factors that contain at least one of the frontal variables
 | |
| 	Dimensions dimensions = this->dimensions();
 | |
| 
 | |
| 	// collect separator
 | |
| 	Ordering separator;
 | |
| 	set<Symbol> frontal_set(frontals.begin(), frontals.end());
 | |
| 	BOOST_FOREACH(const Symbol& key, this->keys()) {
 | |
| 		if (frontal_set.find(key) == frontal_set.end())
 | |
| 			separator.push_back(key);
 | |
| 	}
 | |
| 
 | |
| 	Matrix Ab; SharedDiagonal model;
 | |
| 	Ordering ord = frontals;
 | |
| 	ord.insert(ord.end(), separator.begin(), separator.end());
 | |
| 	boost::tie(Ab, model) = combineFactorsAndCreateMatrix(*this, ord, dimensions);
 | |
| 
 | |
| 	// eliminate that joint factor
 | |
| 	GaussianFactor::shared_ptr factor;
 | |
| 	GaussianBayesNet bn;
 | |
| 	boost::tie(bn, factor) =
 | |
| 			GaussianFactor::eliminateMatrix(Ab, model, frontals, separator, dimensions);
 | |
| 
 | |
| 	// add new factor on separator back into the graph
 | |
| 	*this = GaussianFactorGraph();
 | |
| 	if (!factor->empty()) push_back(factor);
 | |
| 
 | |
| 	return bn;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| VectorConfig GaussianFactorGraph::optimize(const Ordering& ordering, bool old)
 | |
| {
 | |
| 	// eliminate all nodes in the given ordering -> chordal Bayes net
 | |
| 	GaussianBayesNet chordalBayesNet = eliminate(ordering, old);
 | |
| 
 | |
| 	// calculate new configuration (using backsubstitution)
 | |
| 	VectorConfig delta = ::optimize(chordalBayesNet);
 | |
| 	return delta;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| //VectorConfig GaussianFactorGraph::optimizeMultiFrontals(const Ordering& ordering)
 | |
| //{
 | |
| //	GaussianJunctionTree junctionTree(*this, ordering);
 | |
| //
 | |
| //	return junctionTree.optimize();
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| boost::shared_ptr<GaussianBayesNet>
 | |
| GaussianFactorGraph::eliminate_(const Ordering& ordering)
 | |
| {
 | |
| 	boost::shared_ptr<GaussianBayesNet> chordalBayesNet(new GaussianBayesNet); // empty
 | |
| 	BOOST_FOREACH(const Symbol& key, ordering) {
 | |
| 		GaussianConditional::shared_ptr cg = eliminateOne(key);
 | |
| 		chordalBayesNet->push_back(cg);
 | |
| 	}
 | |
| 	return chordalBayesNet;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| boost::shared_ptr<VectorConfig>
 | |
| GaussianFactorGraph::optimize_(const Ordering& ordering) {
 | |
| 	return boost::shared_ptr<VectorConfig>(new VectorConfig(optimize(ordering)));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| void GaussianFactorGraph::combine(const GaussianFactorGraph &lfg){
 | |
| 	for(const_iterator factor=lfg.factors_.begin(); factor!=lfg.factors_.end(); factor++){
 | |
| 		push_back(*factor);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| GaussianFactorGraph GaussianFactorGraph::combine2(const GaussianFactorGraph& lfg1,
 | |
| 		const GaussianFactorGraph& lfg2) {
 | |
| 
 | |
| 	// create new linear factor graph equal to the first one
 | |
| 	GaussianFactorGraph fg = lfg1;
 | |
| 
 | |
| 	// add the second factors_ in the graph
 | |
| 	for (const_iterator factor = lfg2.factors_.begin(); factor
 | |
| 			!= lfg2.factors_.end(); factor++) {
 | |
| 		fg.push_back(*factor);
 | |
| 	}
 | |
| 	return fg;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ************************************************************************* */  
 | |
| Dimensions GaussianFactorGraph::dimensions() const {
 | |
| 	Dimensions result;
 | |
| 	BOOST_FOREACH(const sharedFactor& factor,factors_) {
 | |
| 		Dimensions vs = factor->dimensions();
 | |
| 		Symbol key; int dim;
 | |
| 		FOREACH_PAIR(key,dim,vs) result.insert(make_pair(key,dim));
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */  
 | |
| GaussianFactorGraph GaussianFactorGraph::add_priors(double sigma) const {
 | |
| 
 | |
| 	// start with this factor graph
 | |
| 	GaussianFactorGraph result = *this;
 | |
| 
 | |
| 	// find all variables and their dimensions
 | |
| 	Dimensions vs = dimensions();
 | |
| 
 | |
| 	// for each of the variables, add a prior
 | |
| 	Symbol key; int dim;
 | |
| 	FOREACH_PAIR(key,dim,vs) {
 | |
| 		Matrix A = eye(dim);
 | |
| 		Vector b = zero(dim);
 | |
| 		SharedDiagonal model = noiseModel::Isotropic::Sigma(dim,sigma);
 | |
| 		sharedFactor prior(new GaussianFactor(key,A,b, model));
 | |
| 		result.push_back(prior);
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Errors GaussianFactorGraph::rhs() const {
 | |
| 	Errors e;
 | |
| 	BOOST_FOREACH(const sharedFactor& factor,factors_)
 | |
| 		e.push_back(ediv(factor->get_b(),factor->get_sigmas()));
 | |
| 	return e;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Vector GaussianFactorGraph::rhsVector() const {
 | |
| 	Errors e = rhs();
 | |
| 	return concatVectors(e);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */  
 | |
| pair<Matrix,Vector> GaussianFactorGraph::matrix(const Ordering& ordering) const {
 | |
| 
 | |
| 	// get all factors
 | |
| 	GaussianFactorSet found;
 | |
| 	BOOST_FOREACH(const sharedFactor& factor,factors_)
 | |
| 		found.push_back(factor);
 | |
| 
 | |
| 	// combine them
 | |
| 	GaussianFactor lf(found);
 | |
| 
 | |
| 	// Return Matrix and Vector
 | |
| 	return lf.matrix(ordering);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| VectorConfig GaussianFactorGraph::assembleConfig(const Vector& vs, const Ordering& ordering) const {
 | |
| 	Dimensions dims = dimensions();
 | |
| 	VectorConfig config;
 | |
| 	Vector::const_iterator itSrc = vs.begin();
 | |
| 	Vector::iterator itDst;
 | |
| 	BOOST_FOREACH(const Symbol& key, ordering){
 | |
| 		int dim = dims.find(key)->second;
 | |
| 		Vector v(dim);
 | |
| 		for (itDst=v.begin(); itDst!=v.end(); itDst++, itSrc++)
 | |
| 			*itDst = *itSrc;
 | |
| 		config.insert(key, v);
 | |
| 	}
 | |
| 	if (itSrc != vs.end())
 | |
| 		throw runtime_error("assembleConfig: input vector and ordering are not compatible with the graph");
 | |
| 	return config;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| pair<Dimensions, size_t> GaussianFactorGraph::columnIndices_(const Ordering& ordering) const {
 | |
| 
 | |
| 	// get the dimensions for all variables
 | |
| 	Dimensions variableSet = dimensions();
 | |
| 
 | |
| 	// Find the starting index and dimensions for all variables given the order
 | |
| 	size_t j = 1;
 | |
| 	Dimensions result;
 | |
| 	BOOST_FOREACH(const Symbol& key, ordering) {
 | |
| 		// associate key with first column index
 | |
| 		result.insert(make_pair(key,j));
 | |
| 		// find dimension for this key
 | |
| 		Dimensions::const_iterator it = variableSet.find(key);
 | |
| 		if (it==variableSet.end()) // key not found, now what ?
 | |
| 				throw invalid_argument("ColumnIndices: this ordering contains keys not in the graph");
 | |
| 		// advance column index to next block by adding dim(key)
 | |
| 		j += it->second;
 | |
| 	}
 | |
| 
 | |
| 	return make_pair(result, j-1);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Dimensions GaussianFactorGraph::columnIndices(const Ordering& ordering) const {
 | |
| 	return columnIndices_(ordering).first;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| pair<size_t, size_t> GaussianFactorGraph::sizeOfA() const {
 | |
| 	size_t m = 0, n = 0;
 | |
| 	Dimensions variableSet = dimensions();
 | |
| 	BOOST_FOREACH(const Dimensions::value_type value, variableSet)
 | |
| 		n += value.second;
 | |
| 	BOOST_FOREACH(const sharedFactor& factor,factors_)
 | |
| 		m += factor->numberOfRows();
 | |
| 	return make_pair(m, n);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix GaussianFactorGraph::sparse(const Ordering& ordering) const {
 | |
| 
 | |
| 	// get the starting column indices for all variables
 | |
| 	Dimensions indices = columnIndices(ordering);
 | |
| 
 | |
| 	return sparse(indices);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| Matrix GaussianFactorGraph::sparse(const Dimensions& indices) const {
 | |
| 
 | |
| 	// return values
 | |
| 	list<int> I,J;
 | |
| 	list<double> S;
 | |
| 
 | |
| 	// Collect the I,J,S lists for all factors
 | |
| 	int row_index = 0;
 | |
| 	BOOST_FOREACH(const sharedFactor& factor,factors_) {
 | |
| 
 | |
| 		// get sparse lists for the factor
 | |
| 		list<int> i1,j1;
 | |
| 		list<double> s1;
 | |
| 		boost::tie(i1,j1,s1) = factor->sparse(indices);
 | |
| 
 | |
| 		// add row_start to every row index
 | |
| 		transform(i1.begin(), i1.end(), i1.begin(), bind2nd(plus<int>(), row_index));
 | |
| 
 | |
| 		// splice lists from factor to the end of the global lists
 | |
| 		I.splice(I.end(), i1);
 | |
| 		J.splice(J.end(), j1);
 | |
| 		S.splice(S.end(), s1);
 | |
| 
 | |
| 		// advance row start
 | |
| 		row_index += factor->numberOfRows();
 | |
| 	}
 | |
| 
 | |
| 	// Convert them to vectors for MATLAB
 | |
| 	// TODO: just create a sparse matrix class already
 | |
| 	size_t nzmax = S.size();
 | |
| 	Matrix ijs(3,nzmax);
 | |
| 	copy(I.begin(),I.end(),ijs.begin2());
 | |
| 	copy(J.begin(),J.end(),ijs.begin2()+nzmax);
 | |
| 	copy(S.begin(),S.end(),ijs.begin2()+2*nzmax);
 | |
| 
 | |
| 	// return the result
 | |
| 	return ijs;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| VectorConfig GaussianFactorGraph::steepestDescent(const VectorConfig& x0,
 | |
| 		bool verbose, double epsilon, size_t maxIterations) const {
 | |
| 	return gtsam::steepestDescent(*this, x0, verbose, epsilon, maxIterations);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| boost::shared_ptr<VectorConfig> GaussianFactorGraph::steepestDescent_(
 | |
| 		const VectorConfig& x0, bool verbose, double epsilon, size_t maxIterations) const {
 | |
| 	return boost::shared_ptr<VectorConfig>(new VectorConfig(
 | |
| 			gtsam::conjugateGradientDescent(*this, x0, verbose, epsilon,
 | |
| 					maxIterations)));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| VectorConfig GaussianFactorGraph::conjugateGradientDescent(
 | |
| 		const VectorConfig& x0, bool verbose, double epsilon, size_t maxIterations) const {
 | |
| 	return gtsam::conjugateGradientDescent(*this, x0, verbose, epsilon,
 | |
| 			maxIterations);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| boost::shared_ptr<VectorConfig> GaussianFactorGraph::conjugateGradientDescent_(
 | |
| 		const VectorConfig& x0, bool verbose, double epsilon, size_t maxIterations) const {
 | |
| 	return boost::shared_ptr<VectorConfig>(new VectorConfig(
 | |
| 			gtsam::conjugateGradientDescent(*this, x0, verbose, epsilon,
 | |
| 					maxIterations)));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| template std::pair<Matrix, SharedDiagonal> combineFactorsAndCreateMatrix<vector<GaussianFactor::shared_ptr> >(
 | |
| 		const vector<GaussianFactor::shared_ptr>& factors,	const Ordering& order, const Dimensions& dimensions);
 | |
| 
 | |
| template std::pair<Matrix, SharedDiagonal> combineFactorsAndCreateMatrix<GaussianFactorGraph>(
 | |
| 		const GaussianFactorGraph& factors,	const Ordering& order, const Dimensions& dimensions);
 | |
| 
 | |
| } // namespace gtsam
 |