80 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    timeLago.cpp
 | |
|  * @brief   Time the LAGO initialization method
 | |
|  * @author  Richard Roberts
 | |
|  * @date    Dec 3, 2010
 | |
|  */
 | |
| 
 | |
| #include <gtsam/slam/dataset.h>
 | |
| #include <gtsam/slam/lago.h>
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/nonlinear/GaussNewtonOptimizer.h>
 | |
| #include <gtsam/linear/Sampler.h>
 | |
| #include <gtsam/base/timing.h>
 | |
| 
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| int main(int argc, char *argv[]) {
 | |
| 
 | |
|   size_t trials = 1;
 | |
| 
 | |
|   // read graph
 | |
|   string inputFile = findExampleDataFile("w10000");
 | |
|   auto model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.05, 0.05, 5.0 * M_PI / 180.0).finished());
 | |
|   const auto [g, solution] = load2D(inputFile, model);
 | |
| 
 | |
|   // add noise to create initial estimate
 | |
|   Values initial;
 | |
|   auto noise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.5, 0.5, 15.0 * M_PI / 180.0).finished());
 | |
|   Sampler sampler(noise);
 | |
|   for(const auto& [key,pose]: solution->extract<Pose2>())
 | |
|     initial.insert(key, pose.retract(sampler.sample()));
 | |
| 
 | |
|   // Add prior on the pose having index (key) = 0
 | |
|   noiseModel::Diagonal::shared_ptr priorModel = //
 | |
|       noiseModel::Diagonal::Sigmas(Vector3(1e-6, 1e-6, 1e-8));
 | |
|   g->addPrior(0, Pose2(), priorModel);
 | |
| 
 | |
|   // LAGO
 | |
|   for (size_t i = 0; i < trials; i++) {
 | |
|     {
 | |
|       gttic_(lago);
 | |
| 
 | |
|       gttic_(init);
 | |
|       Values lagoInitial = lago::initialize(*g);
 | |
|       gttoc_(init);
 | |
| 
 | |
|       gttic_(refine);
 | |
|       GaussNewtonOptimizer optimizer(*g, lagoInitial);
 | |
|       Values result = optimizer.optimize();
 | |
|       gttoc_(refine);
 | |
|     }
 | |
| 
 | |
|     {
 | |
|       gttic_(optimize);
 | |
|       GaussNewtonOptimizer optimizer(*g, initial);
 | |
|       Values result = optimizer.optimize();
 | |
|     }
 | |
| 
 | |
|     tictoc_finishedIteration_();
 | |
|   }
 | |
| 
 | |
|   tictoc_print_();
 | |
| 
 | |
|   return 0;
 | |
| }
 |