91 lines
3.0 KiB
C++
91 lines
3.0 KiB
C++
/**
|
|
* @file NonlinearConjugateGradientOptimizer.cpp
|
|
* @brief Test simple CG optimizer
|
|
* @author Yong-Dian Jian
|
|
* @date June 11, 2012
|
|
*/
|
|
|
|
/**
|
|
* @file testGradientDescentOptimizer.cpp
|
|
* @brief Small test of NonlinearConjugateGradientOptimizer
|
|
* @author Yong-Dian Jian
|
|
* @date Jun 11, 2012
|
|
*/
|
|
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/nonlinear/NonlinearConjugateGradientOptimizer.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// Generate a small PoseSLAM problem
|
|
std::tuple<NonlinearFactorGraph, Values> generateProblem() {
|
|
|
|
// 1. Create graph container and add factors to it
|
|
NonlinearFactorGraph graph;
|
|
|
|
// 2a. Add Gaussian prior
|
|
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
|
|
SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(
|
|
Vector3(0.3, 0.3, 0.1));
|
|
graph.addPrior(1, priorMean, priorNoise);
|
|
|
|
// 2b. Add odometry factors
|
|
SharedDiagonal odometryNoise = noiseModel::Diagonal::Sigmas(
|
|
Vector3(0.2, 0.2, 0.1));
|
|
graph.emplace_shared<BetweenFactor<Pose2>>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise);
|
|
graph.emplace_shared<BetweenFactor<Pose2>>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
|
|
graph.emplace_shared<BetweenFactor<Pose2>>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
|
|
graph.emplace_shared<BetweenFactor<Pose2>>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise);
|
|
|
|
// 2c. Add pose constraint
|
|
SharedDiagonal constraintUncertainty = noiseModel::Diagonal::Sigmas(
|
|
Vector3(0.2, 0.2, 0.1));
|
|
graph.emplace_shared<BetweenFactor<Pose2>>(5, 2, Pose2(2.0, 0.0, M_PI_2),
|
|
constraintUncertainty);
|
|
|
|
// 3. Create the data structure to hold the initialEstimate estimate to the solution
|
|
Values initialEstimate;
|
|
Pose2 x1(0.5, 0.0, 0.2);
|
|
initialEstimate.insert(1, x1);
|
|
Pose2 x2(2.3, 0.1, -0.2);
|
|
initialEstimate.insert(2, x2);
|
|
Pose2 x3(4.1, 0.1, M_PI_2);
|
|
initialEstimate.insert(3, x3);
|
|
Pose2 x4(4.0, 2.0, M_PI);
|
|
initialEstimate.insert(4, x4);
|
|
Pose2 x5(2.1, 2.1, -M_PI_2);
|
|
initialEstimate.insert(5, x5);
|
|
|
|
return {graph, initialEstimate};
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(NonlinearConjugateGradientOptimizer, Optimize) {
|
|
const auto [graph, initialEstimate] = generateProblem();
|
|
// cout << "initial error = " << graph.error(initialEstimate) << endl;
|
|
|
|
NonlinearOptimizerParams param;
|
|
param.maxIterations = 500; /* requires a larger number of iterations to converge */
|
|
param.verbosity = NonlinearOptimizerParams::SILENT;
|
|
|
|
NonlinearConjugateGradientOptimizer optimizer(graph, initialEstimate, param);
|
|
Values result = optimizer.optimize();
|
|
// cout << "cg final error = " << graph.error(result) << endl;
|
|
|
|
EXPECT_DOUBLES_EQUAL(0.0, graph.error(result), 1e-4);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|