gtsam/tests/testDoglegOptimizer.cpp

191 lines
7.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testDoglegOptimizer.cpp
* @brief Unit tests for DoglegOptimizer
* @author Richard Roberts
* @author Frank dellaert
*/
#include <CppUnitLite/TestHarness.h>
#include <tests/smallExample.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/nonlinear/DoglegOptimizer.h>
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/base/numericalDerivative.h>
#include <functional>
using namespace std;
using namespace gtsam;
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
/* ************************************************************************* */
TEST(DoglegOptimizer, ComputeBlend) {
// Create an arbitrary Bayes Net
GaussianBayesNet gbn;
gbn.emplace_shared<GaussianConditional>(
0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished());
gbn.emplace_shared<GaussianConditional>(
1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished());
gbn.emplace_shared<GaussianConditional>(
2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished());
gbn.emplace_shared<GaussianConditional>(
3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished());
gbn.emplace_shared<GaussianConditional>(
4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished());
// Compute steepest descent point
VectorValues xu = gbn.optimizeGradientSearch();
// Compute Newton's method point
VectorValues xn = gbn.optimize();
// The Newton's method point should be more "adventurous", i.e. larger, than the steepest descent point
EXPECT(xu.vector().norm() < xn.vector().norm());
// Compute blend
double Delta = 1.5;
VectorValues xb = DoglegOptimizerImpl::ComputeBlend(Delta, xu, xn);
DOUBLES_EQUAL(Delta, xb.vector().norm(), 1e-10);
}
/* ************************************************************************* */
TEST(DoglegOptimizer, ComputeDoglegPoint) {
// Create an arbitrary Bayes Net
GaussianBayesNet gbn;
gbn.emplace_shared<GaussianConditional>(
0, Vector2(1.0,2.0), (Matrix(2, 2) << 3.0,4.0,0.0,6.0).finished(),
3, (Matrix(2, 2) << 7.0,8.0,9.0,10.0).finished(),
4, (Matrix(2, 2) << 11.0,12.0,13.0,14.0).finished());
gbn.emplace_shared<GaussianConditional>(
1, Vector2(15.0,16.0), (Matrix(2, 2) << 17.0,18.0,0.0,20.0).finished(),
2, (Matrix(2, 2) << 21.0,22.0,23.0,24.0).finished(),
4, (Matrix(2, 2) << 25.0,26.0,27.0,28.0).finished());
gbn.emplace_shared<GaussianConditional>(
2, Vector2(29.0,30.0), (Matrix(2, 2) << 31.0,32.0,0.0,34.0).finished(),
3, (Matrix(2, 2) << 35.0,36.0,37.0,38.0).finished());
gbn.emplace_shared<GaussianConditional>(
3, Vector2(39.0,40.0), (Matrix(2, 2) << 41.0,42.0,0.0,44.0).finished(),
4, (Matrix(2, 2) << 45.0,46.0,47.0,48.0).finished());
gbn.emplace_shared<GaussianConditional>(
4, Vector2(49.0,50.0), (Matrix(2, 2) << 51.0,52.0,0.0,54.0).finished());
// Compute dogleg point for different deltas
double Delta1 = 0.5; // Less than steepest descent
VectorValues actual1 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta1, gbn.optimizeGradientSearch(), gbn.optimize());
DOUBLES_EQUAL(Delta1, actual1.vector().norm(), 1e-5);
double Delta2 = 1.5; // Between steepest descent and Newton's method
VectorValues expected2 = DoglegOptimizerImpl::ComputeBlend(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
VectorValues actual2 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta2, gbn.optimizeGradientSearch(), gbn.optimize());
DOUBLES_EQUAL(Delta2, actual2.vector().norm(), 1e-5);
EXPECT(assert_equal(expected2, actual2));
double Delta3 = 5.0; // Larger than Newton's method point
VectorValues expected3 = gbn.optimize();
VectorValues actual3 = DoglegOptimizerImpl::ComputeDoglegPoint(Delta3, gbn.optimizeGradientSearch(), gbn.optimize());
EXPECT(assert_equal(expected3, actual3));
}
/* ************************************************************************* */
TEST(DoglegOptimizer, Iterate) {
// really non-linear factor graph
NonlinearFactorGraph fg = example::createReallyNonlinearFactorGraph();
// config far from minimum
Point2 x0(3,0);
Values config;
config.insert(X(1), x0);
double Delta = 1.0;
for(size_t it=0; it<10; ++it) {
auto linearized = fg.linearize(config);
// Iterate assumes that linear error = nonlinear error at the linearization point, and this should be true
double nonlinearError = fg.error(config);
double linearError = linearized->error(config.zeroVectors());
DOUBLES_EQUAL(nonlinearError, linearError, 1e-5);
auto gbn = linearized->eliminateSequential();
VectorValues dx_u = gbn->optimizeGradientSearch();
VectorValues dx_n = gbn->optimize();
DoglegOptimizerImpl::IterationResult result = DoglegOptimizerImpl::Iterate(
Delta, DoglegOptimizerImpl::SEARCH_EACH_ITERATION, dx_u, dx_n, *gbn, fg,
config, fg.error(config));
Delta = result.delta;
EXPECT(result.f_error < fg.error(config)); // Check that error decreases
Values newConfig(config.retract(result.dx_d));
config = newConfig;
DOUBLES_EQUAL(fg.error(config), result.f_error, 1e-5); // Check that error is correctly filled in
}
}
/* ************************************************************************* */
TEST(DoglegOptimizer, Constraint) {
// Create a pose-graph graph with a constraint on the first pose
NonlinearFactorGraph graph;
const Pose2 origin(0, 0, 0), pose2(2, 0, 0);
graph.emplace_shared<NonlinearEquality<Pose2> >(1, origin);
auto model = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, pose2, model);
// Create feasible initial estimate
Values initial;
initial.insert(1, origin); // feasible !
initial.insert(2, Pose2(2.3, 0.1, -0.2));
// Optimize the initial values using DoglegOptimizer
DoglegParams params;
params.setVerbosityDL("VERBOSITY");
DoglegOptimizer optimizer(graph, initial, params);
Values result = optimizer.optimize();
// Check result
EXPECT(assert_equal(pose2, result.at<Pose2>(2)));
// Create infeasible initial estimate
Values infeasible;
infeasible.insert(1, Pose2(0.1, 0, 0)); // infeasible !
infeasible.insert(2, Pose2(2.3, 0.1, -0.2));
// Try optimizing with infeasible initial estimate
DoglegOptimizer optimizer2(graph, infeasible, params);
#ifdef GTSAM_USE_TBB
CHECK_EXCEPTION(optimizer2.optimize(), std::exception);
#else
CHECK_EXCEPTION(optimizer2.optimize(), std::invalid_argument);
#endif
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */