gtsam/gtsam_unstable/linear/LinearEquality.h

124 lines
3.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* LinearEquality.h
* @brief: LinearEquality derived from Base with constrained noise model
* @date: Nov 27, 2014
* @author: thduynguyen
*/
#pragma once
#include <gtsam/linear/JacobianFactor.h>
namespace gtsam {
/**
* This class defines Linear constraints by inherit Base
* with the special Constrained noise model
*/
class LinearEquality: public JacobianFactor {
public:
typedef LinearEquality This; ///< Typedef to this class
typedef JacobianFactor Base; ///< Typedef to base class
typedef boost::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
private:
Key dualKey_;
public:
/** default constructor for I/O */
LinearEquality() :
Base() {
}
/** Conversion from HessianFactor (does Cholesky to obtain Jacobian matrix) */
explicit LinearEquality(const HessianFactor& hf) {
throw std::runtime_error("Cannot convert HessianFactor to LinearEquality");
}
/** Construct unary factor */
LinearEquality(Key i1, const Matrix& A1, const Vector& b, Key dualKey) :
Base(i1, A1, b, noiseModel::Constrained::All(b.rows())), dualKey_(dualKey) {
}
/** Construct binary factor */
LinearEquality(Key i1, const Matrix& A1, Key i2, const Matrix& A2,
const Vector& b, Key dualKey) :
Base(i1, A1, i2, A2, b, noiseModel::Constrained::All(b.rows())), dualKey_(
dualKey) {
}
/** Construct ternary factor */
LinearEquality(Key i1, const Matrix& A1, Key i2, const Matrix& A2, Key i3,
const Matrix& A3, const Vector& b, Key dualKey) :
Base(i1, A1, i2, A2, i3, A3, b, noiseModel::Constrained::All(b.rows())), dualKey_(
dualKey) {
}
/** Construct an n-ary factor
* @tparam TERMS A container whose value type is std::pair<Key, Matrix>, specifying the
* collection of keys and matrices making up the factor. */
template<typename TERMS>
LinearEquality(const TERMS& terms, const Vector& b, Key dualKey) :
Base(terms, b, noiseModel::Constrained::All(b.rows())), dualKey_(dualKey) {
}
/** Virtual destructor */
virtual ~LinearEquality() {
}
/** equals */
virtual bool equals(const GaussianFactor& lf, double tol = 1e-9) const {
return Base::equals(lf, tol);
}
/** print */
virtual void print(const std::string& s = "", const KeyFormatter& formatter =
DefaultKeyFormatter) const {
Base::print(s, formatter);
}
/** Clone this LinearEquality */
virtual GaussianFactor::shared_ptr clone() const {
return boost::static_pointer_cast<GaussianFactor>(
boost::make_shared<LinearEquality>(*this));
}
/// dual key
Key dualKey() const { return dualKey_; }
/// for active set method: equality constraints are always active
bool active() const { return true; }
/** Special error_vector for constraints (A*x-b) */
Vector error_vector(const VectorValues& c) const {
return unweighted_error(c);
}
/** Special error for constraints.
* I think it should be zero, as this function is meant for objective cost.
* But the name "error" can be misleading.
* TODO: confirm with Frank!! */
virtual double error(const VectorValues& c) const {
return 0.0;
}
}; // \ LinearEquality
/// traits
template<> struct traits_x<LinearEquality> : public Testable<LinearEquality> {};
} // \ namespace gtsam