94 lines
2.8 KiB
C++
94 lines
2.8 KiB
C++
/**
|
|
* @file BetweenFactor.h
|
|
* @authors Frank Dellaert, Viorela Ila
|
|
**/
|
|
#pragma once
|
|
|
|
#include <ostream>
|
|
|
|
#include "NonlinearFactor.h"
|
|
#include "GaussianFactor.h"
|
|
#include "Lie.h"
|
|
#include "Matrix.h"
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* A class for a measurement predicted by "between(config[key1],config[key2])"
|
|
* T is the Lie group type, Config where the T's are gotten from
|
|
*/
|
|
template<class T, class Config>
|
|
class BetweenFactor: public NonlinearFactor<Config> {
|
|
|
|
private:
|
|
|
|
T measured_; /** The measurement */
|
|
std::string key1_, key2_; /** The keys of the two poses, order matters */
|
|
std::list<std::string> keys_; /** The keys as a list */
|
|
Matrix square_root_inverse_covariance_; /** sqrt(inv(measurement_covariance)) */
|
|
|
|
public:
|
|
|
|
// shorthand for a smart pointer to a factor
|
|
typedef typename boost::shared_ptr<BetweenFactor> shared_ptr;
|
|
|
|
/** Constructor */
|
|
BetweenFactor(const std::string& key1, const std::string& key2,
|
|
const T& measured, const Matrix& measurement_covariance) :
|
|
key1_(key1), key2_(key2), measured_(measured) {
|
|
square_root_inverse_covariance_ = inverse_square_root(
|
|
measurement_covariance);
|
|
keys_.push_back(key1);
|
|
keys_.push_back(key2);
|
|
}
|
|
|
|
/** implement functions needed for Testable */
|
|
|
|
/** print */
|
|
void print(const std::string& name) const {
|
|
std::cout << name << std::endl;
|
|
std::cout << "Factor " << std::endl;
|
|
std::cout << "key1 " << key1_ << std::endl;
|
|
std::cout << "key2 " << key2_ << std::endl;
|
|
measured_.print("measured ");
|
|
gtsam::print(square_root_inverse_covariance_, "MeasurementCovariance");
|
|
}
|
|
|
|
/** equals */
|
|
bool equals(const NonlinearFactor<Config>& expected, double tol) const {
|
|
return key1_ == expected.key1_ && key2_ == expected.key2_
|
|
&& measured_.equals(expected.measured_, tol);
|
|
}
|
|
|
|
/** implement functions needed to derive from Factor */
|
|
|
|
/** vector of errors */
|
|
Vector error_vector(const Config& x) const {
|
|
//z-h
|
|
T p1 = x.get(key1_), p2 = x.get(key2_);
|
|
T hx = between(p1,p2);
|
|
// manifold equivalent of z-h(x) -> log(h(x),z)
|
|
return square_root_inverse_covariance_ * logmap(hx,measured_);
|
|
}
|
|
|
|
/** keys as a list */
|
|
inline std::list<std::string> keys() const { return keys_;}
|
|
|
|
/** number of variables attached to this factor */
|
|
inline std::size_t size() const { return 2;}
|
|
|
|
/** linearize */
|
|
boost::shared_ptr<GaussianFactor> linearize(const Config& x0) const {
|
|
T p1 = x0.get(key1_), p2 = x0.get(key2_);
|
|
Matrix A1 = Dbetween1(p1, p2);
|
|
Matrix A2 = Dbetween2(p1, p2);
|
|
Vector b = error_vector(x0); // already has sigmas in !
|
|
boost::shared_ptr<GaussianFactor> linearized(new GaussianFactor(
|
|
key1_, square_root_inverse_covariance_ * A1,
|
|
key2_, square_root_inverse_covariance_ * A2, b, 1.0));
|
|
return linearized;
|
|
}
|
|
};
|
|
|
|
} /// namespace gtsam
|