gtsam/tests/testTranslationRecovery.cpp

257 lines
8.7 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file TranslationRecovery.h
* @author Frank Dellaert
* @date March 2020
* @brief test recovering translations when rotations are given.
*/
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Unit3.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/sfm/TranslationFactor.h>
#include <gtsam/slam/PriorFactor.h>
namespace gtsam {
// Set up an optimization problem for the unknown translations Ti in the world
// coordinate frame, given the known camera attitudes wRi with respect to the
// world frame, and a set of (noisy) translation directions of type Unit3,
// w_aZb. The measurement equation is
// w_aZb = Unit3(Tb - Ta) (1)
// i.e., w_aZb is the translation direction from frame A to B, in world
// coordinates. Although Unit3 instances live on a manifold, following
// Wilson14eccv_1DSfM.pdf error we compute the *chordal distance* in the
// ambient world coordinate frame.
//
// It is clear that we cannot recover the scale, nor the absolute position,
// so the gauge freedom in this case is 3 + 1 = 4. We fix these by taking fixing
// the translations Ta and Tb associated with the first measurement w_aZb,
// clamping them to their initial values as given to this method. If no initial
// values are given, we use the origin for Tb and set Tb to make (1) come
// through, i.e.,
// Tb = s * wRa * Point3(w_aZb) (2)
// where s is an arbitrary scale that can be supplied, default 1.0. Hence, two
// versions are supplied below corresponding to whether we have initial values
// or not. Because the latter one is called from the first one, this is prime.
class TranslationRecovery {
public:
using KeyPair = std::pair<Key, Key>;
using TranslationEdges = std::map<KeyPair, Unit3>;
private:
TranslationEdges relativeTranslations_;
LevenbergMarquardtParams params_;
public:
/**
* @brief Construct a new Translation Recovery object
*
* @param relativeTranslations the relative translations, in world coordinate
* frames, indexed in a map by a pair of Pose keys.
*/
TranslationRecovery(const TranslationEdges& relativeTranslations)
: relativeTranslations_(relativeTranslations) {
params_.setVerbosityLM("Summary");
}
/**
* @brief Build the factor graph to do the optimization.
*
* @return NonlinearFactorGraph
*/
NonlinearFactorGraph buildGraph() const {
auto noiseModel = noiseModel::Isotropic::Sigma(3, 0.01);
NonlinearFactorGraph graph;
// Add all relative translation edges
for (auto edge : relativeTranslations_) {
Key a, b;
std::tie(a, b) = edge.first;
const Unit3 w_aZb = edge.second;
graph.emplace_shared<TranslationFactor>(a, b, w_aZb, noiseModel);
}
return graph;
}
/**
* @brief Add priors on ednpoints of first measurement edge.
*
* @param scale scale for first relative translation which fixes gauge.
* @param graph factor graph to which prior is added.
*/
void addPrior(const double scale, NonlinearFactorGraph* graph) const {
auto noiseModel = noiseModel::Isotropic::Sigma(3, 0.01);
auto edge = relativeTranslations_.begin();
Key a, b;
std::tie(a, b) = edge->first;
const Unit3 w_aZb = edge->second;
graph->emplace_shared<PriorFactor<Point3> >(a, Point3(0, 0, 0), noiseModel);
graph->emplace_shared<PriorFactor<Point3> >(b, scale * w_aZb.point3(),
noiseModel);
}
/**
* @brief Create random initial translations.
*
* @return Values
*/
Values initalizeRandomly() const {
Values initial;
auto insert = [&initial](Key j) {
if (!initial.exists(j)) {
initial.insert<Point3>(j, Vector3::Random());
}
};
// Loop over measurements and add a random translation
for (auto edge : relativeTranslations_) {
Key a, b;
std::tie(a, b) = edge.first;
insert(a);
insert(b);
}
return initial;
}
/**
* @brief Build and optimize factor graph.
*
* @param scale scale for first relative translation which fixes gauge.
* @return Values
*/
Values run(const double scale = 1.0) const {
auto graph = buildGraph();
addPrior(scale, &graph);
const Values initial = initalizeRandomly();
LevenbergMarquardtOptimizer lm(graph, initial, params_);
Values result = lm.optimize();
return result;
}
/**
* @brief Simulate translation direction measurements
*
* @param poses SE(3) ground truth poses stored as Values
* @param edges pairs (a,b) for which a measurement w_aZb will be generated.
*/
static TranslationEdges SimulateMeasurements(
const Values& poses, const std::vector<KeyPair>& edges) {
TranslationEdges relativeTranslations;
for (auto edge : edges) {
Key a, b;
std::tie(a, b) = edge;
const Pose3 wTa = poses.at<Pose3>(a), wTb = poses.at<Pose3>(b);
const Point3 Ta = wTa.translation(), Tb = wTb.translation();
const Unit3 w_aZb(Tb - Ta);
relativeTranslations[edge] = w_aZb;
}
return relativeTranslations;
}
};
} // namespace gtsam
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testTranslationRecovery.cpp
* @author Frank Dellaert
* @date March 2020
* @brief test recovering translations when rotations are given.
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/slam/dataset.h>
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
// We read the BAL file, which has 3 cameras in it, with poses. We then assume
// the rotations are correct, but translations have to be estimated from
// translation directions only. Since we have 3 cameras, A, B, and C, we can at
// most create three relative measurements, let's call them w_aZb, w_aZc, and
// bZc. These will be of type Unit3. We then call `recoverTranslations` which
// sets up an optimization problem for the three unknown translations.
TEST(TranslationRecovery, BAL) {
const string filename = findExampleDataFile("dubrovnik-3-7-pre");
SfM_data db;
bool success = readBAL(filename, db);
if (!success) throw runtime_error("Could not access file!");
// Get camera poses, as Values
size_t j = 0;
Values poses;
for (auto camera : db.cameras) {
poses.insert(j++, camera.pose());
}
// Simulate measurements
const auto relativeTranslations = TranslationRecovery::SimulateMeasurements(
poses, {{0, 1}, {0, 2}, {1, 2}});
// Check
const Pose3 wTa = poses.at<Pose3>(0), wTb = poses.at<Pose3>(1),
wTc = poses.at<Pose3>(2);
const Point3 Ta = wTa.translation(), Tb = wTb.translation(),
Tc = wTc.translation();
const Rot3 aRw = wTa.rotation().inverse();
const Unit3 w_aZb = relativeTranslations.at({0, 1});
EXPECT(assert_equal(Unit3(Tb - Ta), w_aZb));
const Unit3 w_aZc = relativeTranslations.at({0, 2});
EXPECT(assert_equal(Unit3(Tc - Ta), w_aZc));
TranslationRecovery algorithm(relativeTranslations);
const auto graph = algorithm.buildGraph();
EXPECT_LONGS_EQUAL(3, graph.size());
// Translation recovery, version 1
const double scale = 2.0;
const auto result = algorithm.run(scale);
// Check result for first two translations, determined by prior
EXPECT(assert_equal(Point3(0, 0, 0), result.at<Point3>(0)));
EXPECT(assert_equal(Point3(2 * w_aZb.point3()), result.at<Point3>(1)));
// Check that the third translations is correct
Point3 expected = (Tc - Ta) * (scale / (Tb - Ta).norm());
EXPECT(assert_equal(expected, result.at<Point3>(2), 1e-4));
// TODO(frank): how to get stats back?
// EXPECT_DOUBLES_EQUAL(0.0199833, actualError, 1e-5);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */