gtsam/gtsam_unstable/nonlinear/tests/testNonlinearClusterTree.cpp

155 lines
5.8 KiB
C++

/**
* @file testNonlinearClusterTree.cpp
* @author Frank Dellaert
* @date March, 2016
*/
#include <gtsam_unstable/nonlinear/NonlinearClusterTree.h>
#include <gtsam/sam/BearingRangeFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/inference/Symbol.h>
#include <CppUnitLite/TestHarness.h>
using namespace gtsam;
static const Symbol x1('x', 1), x2('x', 2), x3('x', 3);
static const Symbol l1('l', 1), l2('l', 2);
/* ************************************************************************* */
NonlinearFactorGraph planarSLAMGraph() {
NonlinearFactorGraph graph;
// Prior on pose x1 at the origin.
Pose2 prior(0.0, 0.0, 0.0);
auto priorNoise = noiseModel::Diagonal::Sigmas(Vector3(0.3, 0.3, 0.1));
graph.addPrior(x1, prior, priorNoise);
// Two odometry factors
Pose2 odometry(2.0, 0.0, 0.0);
auto odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
graph.emplace_shared<BetweenFactor<Pose2> >(x1, x2, odometry, odometryNoise);
graph.emplace_shared<BetweenFactor<Pose2> >(x2, x3, odometry, odometryNoise);
// Add Range-Bearing measurements to two different landmarks
auto measurementNoise = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.2));
Rot2 bearing11 = Rot2::fromDegrees(45), bearing21 = Rot2::fromDegrees(90),
bearing32 = Rot2::fromDegrees(90);
double range11 = std::sqrt(4.0 + 4.0), range21 = 2.0, range32 = 2.0;
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x1, l1, bearing11, range11, measurementNoise);
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x2, l1, bearing21, range21, measurementNoise);
graph.emplace_shared<BearingRangeFactor<Pose2, Point2> >(x3, l2, bearing32, range32, measurementNoise);
return graph;
}
/* ************************************************************************* */
// Create initial estimate
Values planarSLAMValues() {
Values initial;
initial.insert(l1, Point2(1.8, 2.1));
initial.insert(l2, Point2(4.1, 1.8));
initial.insert(x1, Pose2(0.5, 0.0, 0.2));
initial.insert(x2, Pose2(2.3, 0.1, -0.2));
initial.insert(x3, Pose2(4.1, 0.1, 0.1));
return initial;
}
/* ************************************************************************* */
TEST(NonlinearClusterTree, Clusters) {
NonlinearFactorGraph graph = planarSLAMGraph();
Values initial = planarSLAMValues();
// Build the clusters
// NOTE(frank): Order matters here as factors are removed!
VariableIndex variableIndex(graph);
typedef NonlinearClusterTree::NonlinearCluster Cluster;
auto marginalCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {x1}, &graph));
auto landmarkCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {l1, l2}, &graph));
auto rootCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {x2, x3}, &graph));
EXPECT_LONGS_EQUAL(3, marginalCluster->nrFactors());
EXPECT_LONGS_EQUAL(2, landmarkCluster->nrFactors());
EXPECT_LONGS_EQUAL(1, rootCluster->nrFactors());
EXPECT_LONGS_EQUAL(1, marginalCluster->nrFrontals());
EXPECT_LONGS_EQUAL(2, landmarkCluster->nrFrontals());
EXPECT_LONGS_EQUAL(2, rootCluster->nrFrontals());
// Test linearize
auto gfg = marginalCluster->linearize(initial);
EXPECT_LONGS_EQUAL(3, gfg->size());
// Calculate expected result of only evaluating the marginalCluster
Ordering ordering;
ordering.push_back(x1);
const auto [bn, fg] = gfg->eliminatePartialSequential(ordering);
auto expectedFactor = fg->at<HessianFactor>(0);
if (!expectedFactor)
throw std::runtime_error("Expected HessianFactor");
// Linearize and eliminate the marginalCluster
auto actual = marginalCluster->linearizeAndEliminate(initial);
const GaussianBayesNet& bayesNet = actual.first;
const HessianFactor& factor = *actual.second;
EXPECT(assert_equal(*bn->at(0), *bayesNet.at(0), 1e-6));
EXPECT(assert_equal(*expectedFactor, factor, 1e-6));
}
/* ************************************************************************* */
static NonlinearClusterTree Construct() {
// Build the clusters
// NOTE(frank): Order matters here as factors are removed!
NonlinearFactorGraph graph = planarSLAMGraph();
VariableIndex variableIndex(graph);
typedef NonlinearClusterTree::NonlinearCluster Cluster;
auto marginalCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {x1}, &graph));
auto landmarkCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {l1, l2}, &graph));
auto rootCluster = std::shared_ptr<Cluster>(new Cluster(variableIndex, {x2, x3}, &graph));
// Build the tree
NonlinearClusterTree clusterTree;
clusterTree.addRoot(rootCluster);
rootCluster->addChild(landmarkCluster);
landmarkCluster->addChild(marginalCluster);
return clusterTree;
}
/* ************************************************************************* */
TEST(NonlinearClusterTree, Construct) {
NonlinearClusterTree clusterTree = Construct();
EXPECT_LONGS_EQUAL(3, clusterTree[0].problemSize());
EXPECT_LONGS_EQUAL(3, clusterTree[0][0].problemSize());
EXPECT_LONGS_EQUAL(3, clusterTree[0][0][0].problemSize());
}
/* ************************************************************************* */
TEST(NonlinearClusterTree, Solve) {
NonlinearClusterTree clusterTree = Construct();
Values expected;
expected.insert(l1, Point2(2, 2));
expected.insert(l2, Point2(4, 2));
expected.insert(x1, Pose2(0, 0, 0));
expected.insert(x2, Pose2(2, 0, 0));
expected.insert(x3, Pose2(4, 0, 0));
Values values = planarSLAMValues();
for (size_t i = 0; i < 4; i++)
values = clusterTree.updateCholesky(values);
EXPECT(assert_equal(expected, values, 1e-7));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */