gtsam/nonlinear/NonlinearConstraint.h

474 lines
14 KiB
C++

/*
* @file NonlinearConstraint.h
* @brief Implements nonlinear constraints that can be linearized using
* direct linearization and solving through a quadratic merit function
* @author Alex Cunningham
*/
#pragma once
#include <map>
#include <boost/function.hpp>
#include <gtsam/nonlinear/NonlinearFactor.h>
namespace gtsam {
/**
* Base class for nonlinear constraints
* This allows for both equality and inequality constraints,
* where equality constraints are active all the time (even slightly
* nonzero constraint functions will still be active - inequality
* constraints should be sure to force to actual zero)
*
* NOTE: inequality constraints removed for now
*
* Nonlinear constraints evaluate their error as a part of a quadratic
* error function: ||h(x)-z||^2 + mu * ||c(x)|| where mu is a gain
* on the constraint function that should be made high enough to be
* significant
*/
template <class Config>
class NonlinearConstraint : public NonlinearFactor<Config> {
protected:
typedef NonlinearConstraint<Config> This;
typedef NonlinearFactor<Config> Base;
double mu_; /// gain for quadratic merit function
size_t dim_; /// dimension of the constraint
public:
/** Constructor - sets the cost function and the lagrange multipliers
* @param dim is the dimension of the factor
* @param mu is the gain used at error evaluation (forced to be positive)
*/
NonlinearConstraint(size_t dim, double mu = 1000.0):
Base(noiseModel::Constrained::All(dim)), mu_(fabs(mu)), dim_(dim) {}
virtual ~NonlinearConstraint() {}
/** returns the gain mu */
double mu() const { return mu_; }
/** Print */
virtual void print(const std::string& s = "") const=0;
/** dimension of the constraint (number of rows) */
size_t dim() const { return dim_; }
/** Check if two factors are equal */
virtual bool equals(const Factor<Config>& f, double tol=1e-9) const {
const This* p = dynamic_cast<const This*> (&f);
if (p == NULL) return false;
return Base::equals(*p, tol) && (mu_ == p->mu_);
}
/** error function - returns the quadratic merit function */
virtual double error(const Config& c) const {
const Vector error_vector = unwhitenedError(c);
if (active(c))
return mu_ * inner_prod(error_vector, error_vector);
else return 0.0;
}
/** Raw error vector function g(x) */
virtual Vector unwhitenedError(const Config& c) const = 0;
/**
* active set check, defines what type of constraint this is
*
* In an inequality/bounding constraint, this active() returns true
* when the constraint is *NOT* fulfilled.
* @return true if the constraint is active
*/
virtual bool active(const Config& c) const=0;
/**
* Linearizes around a given config
* @param config is the configuration
* @return a combined linear factor containing both the constraint and the constraint factor
*/
virtual boost::shared_ptr<GaussianFactor> linearize(const Config& c) const=0;
};
/**
* A unary constraint that defaults to an equality constraint
*/
template <class Config, class Key>
class NonlinearConstraint1 : public NonlinearConstraint<Config> {
public:
typedef typename Key::Value_t X;
protected:
typedef NonlinearConstraint1<Config,Key> This;
typedef NonlinearConstraint<Config> Base;
/** key for the constrained variable */
Key key_;
public:
/**
* Basic constructor
* @param key is the identifier for the variable constrained
* @param dim is the size of the constraint (p)
* @param mu is the gain for the factor
*/
NonlinearConstraint1(const Key& key, size_t dim, double mu = 1000.0)
: Base(dim, mu), key_(key) {
this->keys_.push_back(key);
}
virtual ~NonlinearConstraint1() {}
/* print */
void print(const std::string& s = "") const {
std::cout << "NonlinearConstraint1 " << s << std::endl;
std::cout << "key: " << (std::string) key_ << std::endl;
std::cout << "mu: " << this->mu_ << std::endl;
}
/** Check if two factors are equal. Note type is Factor and needs cast. */
virtual bool equals(const Factor<Config>& f, double tol = 1e-9) const {
const This* p = dynamic_cast<const This*> (&f);
if (p == NULL) return false;
return Base::equals(*p, tol) && (key_ == p->key_);
}
/** error function g(x), switched depending on whether the constraint is active */
inline Vector unwhitenedError(const Config& x) const {
if (!active(x)) {
return zero(this->dim());
}
const Key& j = key_;
const X& xj = x[j];
return evaluateError(xj);
}
/** Linearize from config */
boost::shared_ptr<GaussianFactor> linearize(const Config& c) const {
if (!active(c)) {
boost::shared_ptr<GaussianFactor> factor;
return factor;
}
const Key& j = key_;
const X& x = c[j];
Matrix grad;
Vector g = -1.0 * evaluateError(x, grad);
SharedDiagonal model = noiseModel::Constrained::All(this->dim());
return GaussianFactor::shared_ptr(new GaussianFactor(this->key_, grad, g, model));
}
/** g(x) with optional derivative - does not depend on active */
virtual Vector evaluateError(const X& x, boost::optional<Matrix&> H =
boost::none) const = 0;
};
/**
* Unary Equality constraint - simply forces the value of active() to true
*/
template <class Config, class Key>
class NonlinearEqualityConstraint1 : public NonlinearConstraint1<Config, Key> {
public:
typedef typename Key::Value_t X;
protected:
typedef NonlinearEqualityConstraint1<Config,Key> This;
typedef NonlinearConstraint1<Config,Key> Base;
public:
NonlinearEqualityConstraint1(const Key& key, size_t dim, double mu = 1000.0)
: Base(key, dim, mu) {}
virtual ~NonlinearEqualityConstraint1() {}
/** Always active, so fixed value for active() */
virtual bool active(const Config& c) const { return true; }
};
/**
* A binary constraint with arbitrary cost and jacobian functions
*/
template <class Config, class Key1, class Key2>
class NonlinearConstraint2 : public NonlinearConstraint<Config> {
public:
typedef typename Key1::Value_t X1;
typedef typename Key2::Value_t X2;
protected:
typedef NonlinearConstraint2<Config,Key1,Key2> This;
typedef NonlinearConstraint<Config> Base;
/** keys for the constrained variables */
Key1 key1_;
Key2 key2_;
public:
/**
* Basic constructor
* @param key1 is the identifier for the first variable constrained
* @param key2 is the identifier for the second variable constrained
* @param dim is the size of the constraint (p)
* @param mu is the gain for the factor
*/
NonlinearConstraint2(const Key1& key1, const Key2& key2, size_t dim, double mu = 1000.0) :
Base(dim, mu), key1_(key1), key2_(key2) {
this->keys_.push_back(key1);
this->keys_.push_back(key2);
}
virtual ~NonlinearConstraint2() {}
/* print */
void print(const std::string& s = "") const {
std::cout << "NonlinearConstraint2 " << s << std::endl;
std::cout << "key1: " << (std::string) key1_ << std::endl;
std::cout << "key2: " << (std::string) key2_ << std::endl;
std::cout << "mu: " << this->mu_ << std::endl;
}
/** Check if two factors are equal. Note type is Factor and needs cast. */
virtual bool equals(const Factor<Config>& f, double tol = 1e-9) const {
const This* p = dynamic_cast<const This*> (&f);
if (p == NULL) return false;
return Base::equals(*p, tol) && (key1_ == p->key1_) && (key2_ == p->key2_);
}
/** error function g(x), switched depending on whether the constraint is active */
inline Vector unwhitenedError(const Config& x) const {
if (!active(x)) {
return zero(this->dim());
}
const Key1& j1 = key1_;
const Key2& j2 = key2_;
const X1& xj1 = x[j1];
const X2& xj2 = x[j2];
return evaluateError(xj1, xj2);
}
/** Linearize from config */
boost::shared_ptr<GaussianFactor> linearize(const Config& c) const {
if (!active(c)) {
boost::shared_ptr<GaussianFactor> factor;
return factor;
}
const Key1& j1 = key1_; const Key2& j2 = key2_;
const X1& x1 = c[j1]; const X2& x2 = c[j2];
Matrix grad1, grad2;
Vector g = -1.0 * evaluateError(x1, x2, grad1, grad2);
SharedDiagonal model = noiseModel::Constrained::All(this->dim());
return GaussianFactor::shared_ptr(new GaussianFactor(j1, grad1, j2, grad2, g, model));
}
/** g(x) with optional derivative2 - does not depend on active */
virtual Vector evaluateError(const X1& x1, const X2& x2,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const = 0;
};
/**
* Binary Equality constraint - simply forces the value of active() to true
*/
template <class Config, class Key1, class Key2>
class NonlinearEqualityConstraint2 : public NonlinearConstraint2<Config, Key1, Key2> {
public:
typedef typename Key1::Value_t X1;
typedef typename Key2::Value_t X2;
protected:
typedef NonlinearEqualityConstraint2<Config,Key1,Key2> This;
typedef NonlinearConstraint2<Config,Key1,Key2> Base;
public:
NonlinearEqualityConstraint2(const Key1& key1, const Key2& key2, size_t dim, double mu = 1000.0)
: Base(key1, key2, dim, mu) {}
virtual ~NonlinearEqualityConstraint2() {}
/** Always active, so fixed value for active() */
virtual bool active(const Config& c) const { return true; }
};
/**
* A ternary constraint
*/
template <class Config, class Key1, class Key2, class Key3>
class NonlinearConstraint3 : public NonlinearConstraint<Config> {
public:
typedef typename Key1::Value_t X1;
typedef typename Key2::Value_t X2;
typedef typename Key3::Value_t X3;
protected:
typedef NonlinearConstraint3<Config,Key1,Key2,Key3> This;
typedef NonlinearConstraint<Config> Base;
/** keys for the constrained variables */
Key1 key1_;
Key2 key2_;
Key3 key3_;
public:
/**
* Basic constructor
* @param key1 is the identifier for the first variable constrained
* @param key2 is the identifier for the second variable constrained
* @param key3 is the identifier for the second variable constrained
* @param dim is the size of the constraint (p)
* @param mu is the gain for the factor
*/
NonlinearConstraint3(const Key1& key1, const Key2& key2, const Key3& key3,
size_t dim, double mu = 1000.0) :
Base(dim, mu), key1_(key1), key2_(key2), key3_(key3) {
this->keys_.push_back(key1);
this->keys_.push_back(key2);
this->keys_.push_back(key3);
}
virtual ~NonlinearConstraint3() {}
/* print */
void print(const std::string& s = "") const {
std::cout << "NonlinearConstraint3 " << s << std::endl;
std::cout << "key1: " << (std::string) key1_ << std::endl;
std::cout << "key2: " << (std::string) key2_ << std::endl;
std::cout << "key3: " << (std::string) key3_ << std::endl;
std::cout << "mu: " << this->mu_ << std::endl;
}
/** Check if two factors are equal. Note type is Factor and needs cast. */
virtual bool equals(const Factor<Config>& f, double tol = 1e-9) const {
const This* p = dynamic_cast<const This*> (&f);
if (p == NULL) return false;
return Base::equals(*p, tol) && (key1_ == p->key1_) && (key2_ == p->key2_) && (key3_ == p->key3_);
}
/** error function g(x), switched depending on whether the constraint is active */
inline Vector unwhitenedError(const Config& x) const {
if (!active(x)) {
return zero(this->dim());
}
const Key1& j1 = key1_;
const Key2& j2 = key2_;
const Key3& j3 = key3_;
const X1& xj1 = x[j1];
const X2& xj2 = x[j2];
const X3& xj3 = x[j3];
return evaluateError(xj1, xj2, xj3);
}
/** Linearize from config */
boost::shared_ptr<GaussianFactor> linearize(const Config& c) const {
if (!active(c)) {
boost::shared_ptr<GaussianFactor> factor;
return factor;
}
const Key1& j1 = key1_; const Key2& j2 = key2_; const Key3& j3 = key3_;
const X1& x1 = c[j1]; const X2& x2 = c[j2]; const X3& x3 = c[j3];
Matrix grad1, grad2, grad3;
Vector g = -1.0 * evaluateError(x1, x2, x3, grad1, grad2, grad3);
SharedDiagonal model = noiseModel::Constrained::All(this->dim());
return GaussianFactor::shared_ptr(new GaussianFactor(j1, grad1, j2, grad2, j3, grad3, g, model));
}
/** g(x) with optional derivative3 - does not depend on active */
virtual Vector evaluateError(const X1& x1, const X2& x2, const X3& x3,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none,
boost::optional<Matrix&> H3 = boost::none) const = 0;
};
/**
* Ternary Equality constraint - simply forces the value of active() to true
*/
template <class Config, class Key1, class Key2, class Key3>
class NonlinearEqualityConstraint3 : public NonlinearConstraint3<Config, Key1, Key2, Key3> {
public:
typedef typename Key1::Value_t X1;
typedef typename Key2::Value_t X2;
typedef typename Key3::Value_t X3;
protected:
typedef NonlinearEqualityConstraint3<Config,Key1,Key2,Key3> This;
typedef NonlinearConstraint3<Config,Key1,Key2,Key3> Base;
public:
NonlinearEqualityConstraint3(const Key1& key1, const Key2& key2, const Key3& key3,
size_t dim, double mu = 1000.0)
: Base(key1, key2, key3, dim, mu) {}
virtual ~NonlinearEqualityConstraint3() {}
/** Always active, so fixed value for active() */
virtual bool active(const Config& c) const { return true; }
};
/**
* Simple unary equality constraint - fixes a value for a variable
*/
template<class Config, class Key>
class NonlinearEquality1 : public NonlinearEqualityConstraint1<Config, Key> {
public:
typedef typename Key::Value_t X;
protected:
typedef NonlinearEqualityConstraint1<Config, Key> Base;
X value_; /// fixed value for variable
public:
typedef boost::shared_ptr<NonlinearEquality1<Config, Key> > shared_ptr;
NonlinearEquality1(const X& value, const Key& key1, double mu = 1000.0)
: Base(key1, X::Dim(), mu), value_(value) {}
virtual ~NonlinearEquality1() {}
/** g(x) with optional derivative */
Vector evaluateError(const X& x1, boost::optional<Matrix&> H1 = boost::none) const {
const size_t p = X::Dim();
if (H1) *H1 = eye(p);
return logmap(value_, x1);
}
};
/**
* Simple binary equality constraint - this constraint forces two factors to
* be the same. This constraint requires the underlying type to a Lie type
*/
template<class Config, class Key>
class NonlinearEquality2 : public NonlinearEqualityConstraint2<Config, Key, Key> {
public:
typedef typename Key::Value_t X;
protected:
typedef NonlinearEqualityConstraint2<Config, Key, Key> Base;
public:
typedef boost::shared_ptr<NonlinearEquality2<Config, Key> > shared_ptr;
NonlinearEquality2(const Key& key1, const Key& key2, double mu = 1000.0)
: Base(key1, key2, X::Dim(), mu) {}
virtual ~NonlinearEquality2() {}
/** g(x) with optional derivative2 */
Vector evaluateError(const X& x1, const X& x2,
boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const {
const size_t p = X::Dim();
if (H1) *H1 = -eye(p);
if (H2) *H2 = eye(p);
return logmap(x1, x2);
}
};
}