737 lines
25 KiB
C++
737 lines
25 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* @file testSymbolicBayesTree.cpp
|
|
* @date sept 15, 2012
|
|
* @author Frank Dellaert
|
|
* @author Michael Kaess
|
|
* @author Viorela Ila
|
|
*/
|
|
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/symbolic/SymbolicBayesNet.h>
|
|
#include <gtsam/symbolic/SymbolicBayesTree.h>
|
|
#include <gtsam/symbolic/tests/symbolicExampleGraphs.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <iterator>
|
|
#include <type_traits>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace gtsam::symbol_shorthand;
|
|
|
|
static bool debug = false;
|
|
|
|
// Given a vector of shared pointers infer the type of the pointed-to objects
|
|
template<typename T>
|
|
using PointedToType = std::decay_t<decltype(**declval<T>().begin())>;
|
|
|
|
// Given a vector of shared pointers infer the type of the pointed-to objects
|
|
template<typename T>
|
|
using ValuesVector = std::vector<PointedToType<T>>;
|
|
|
|
// Return a vector of dereferenced values
|
|
template<typename T>
|
|
ValuesVector<T> deref(const T& v) {
|
|
ValuesVector<T> result;
|
|
for (auto& t : v)
|
|
result.push_back(*t);
|
|
return result;
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
TEST(SymbolicBayesTree, clear) {
|
|
SymbolicBayesTree bayesTree = asiaBayesTree;
|
|
bayesTree.clear();
|
|
|
|
SymbolicBayesTree expected;
|
|
|
|
// Check whether cleared BayesTree is equal to a new BayesTree
|
|
CHECK(assert_equal(expected, bayesTree));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(SymbolicBayesTree, clique_structure) {
|
|
// l1 l2
|
|
// / | / |
|
|
// x1 --- x2 --- x3 --- x4 --- x5
|
|
// \ |
|
|
// l3
|
|
SymbolicFactorGraph graph;
|
|
graph.emplace_shared<SymbolicFactor>(X(1), L(1));
|
|
graph.emplace_shared<SymbolicFactor>(X(1), X(2));
|
|
graph.emplace_shared<SymbolicFactor>(X(2), L(1));
|
|
graph.emplace_shared<SymbolicFactor>(X(2), X(3));
|
|
graph.emplace_shared<SymbolicFactor>(X(3), X(4));
|
|
graph.emplace_shared<SymbolicFactor>(X(4), L(2));
|
|
graph.emplace_shared<SymbolicFactor>(X(4), X(5));
|
|
graph.emplace_shared<SymbolicFactor>(L(2), X(5));
|
|
graph.emplace_shared<SymbolicFactor>(X(4), L(3));
|
|
graph.emplace_shared<SymbolicFactor>(X(5), L(3));
|
|
|
|
SymbolicBayesTree expected;
|
|
expected.insertRoot(
|
|
NodeClique(Keys(X(2))(X(3)), 2,
|
|
Children(NodeClique(
|
|
Keys(X(4))(X(3)), 1,
|
|
Children(NodeClique(
|
|
Keys(X(5))(L(2))(X(4)), 2,
|
|
Children(LeafClique(Keys(L(3))(X(4))(X(5)), 1))))))(
|
|
LeafClique(Keys(X(1))(L(1))(X(2)), 2))));
|
|
|
|
Ordering order{X(1), L(3), L(1), X(5), X(2), L(2), X(4), X(3)};
|
|
|
|
SymbolicBayesTree actual = *graph.eliminateMultifrontal(order);
|
|
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* *
|
|
Bayes Tree for testing conversion to a forest of orphans needed for incremental.
|
|
A,B
|
|
C|A E|B
|
|
D|C F|E
|
|
*/
|
|
/* ************************************************************************* */
|
|
TEST(BayesTree, removePath) {
|
|
const Key _A_ = A(0), _B_ = B(0), _C_ = C(0), _D_ = D(0), _E_ = E(0),
|
|
_F_ = F(0);
|
|
|
|
SymbolicBayesTree bayesTreeOrig;
|
|
auto left = NodeClique(Keys(_C_)(_A_), 1, {LeafClique(Keys(_D_)(_C_), 1)});
|
|
auto right = NodeClique(Keys(_E_)(_B_), 1, {LeafClique(Keys(_F_)(_E_), 1)});
|
|
bayesTreeOrig.insertRoot(NodeClique(Keys(_A_)(_B_), 2, {left, right}));
|
|
|
|
SymbolicBayesTree bayesTree = bayesTreeOrig;
|
|
|
|
// remove C, expected outcome: factor graph with ABC,
|
|
// Bayes Tree now contains two orphan trees: D|C and E|B,F|E
|
|
SymbolicFactorGraph expected;
|
|
expected.emplace_shared<SymbolicFactor>(_A_, _B_);
|
|
expected.emplace_shared<SymbolicFactor>(_C_, _A_);
|
|
SymbolicBayesTree::Cliques expectedOrphans{bayesTree[_D_], bayesTree[_E_]};
|
|
|
|
SymbolicBayesNet bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removePath(bayesTree[_C_], &bn, &orphans);
|
|
SymbolicFactorGraph factors(bn);
|
|
CHECK(assert_equal(expected, factors));
|
|
CHECK(assert_container_equal(deref(expectedOrphans), deref(orphans)));
|
|
|
|
bayesTree = bayesTreeOrig;
|
|
|
|
// remove E: factor graph with EB; E|B removed from second orphan tree
|
|
SymbolicFactorGraph expected2;
|
|
expected2.emplace_shared<SymbolicFactor>(_A_, _B_);
|
|
expected2.emplace_shared<SymbolicFactor>(_E_, _B_);
|
|
SymbolicBayesTree::Cliques expectedOrphans2{bayesTree[_F_], bayesTree[_C_]};
|
|
|
|
SymbolicBayesNet bn2;
|
|
SymbolicBayesTree::Cliques orphans2;
|
|
bayesTree.removePath(bayesTree[_E_], &bn2, &orphans2);
|
|
SymbolicFactorGraph factors2(bn2);
|
|
CHECK(assert_equal(expected2, factors2));
|
|
CHECK(assert_container_equal(deref(expectedOrphans2), deref(orphans2)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(BayesTree, removePath2) {
|
|
SymbolicBayesTree bayesTree = asiaBayesTree;
|
|
|
|
// Call remove-path with clique B
|
|
SymbolicBayesNet bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removePath(bayesTree[_B_], &bn, &orphans);
|
|
SymbolicFactorGraph factors(bn);
|
|
|
|
// Check expected outcome
|
|
SymbolicFactorGraph expected;
|
|
expected.emplace_shared<SymbolicFactor>(_E_, _L_, _B_);
|
|
CHECK(assert_equal(expected, factors));
|
|
SymbolicBayesTree::Cliques expectedOrphans{bayesTree[_S_], bayesTree[_T_],
|
|
bayesTree[_X_]};
|
|
CHECK(assert_container_equal(deref(expectedOrphans), deref(orphans)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(BayesTree, removePath3) {
|
|
SymbolicBayesTree bayesTree = asiaBayesTree;
|
|
|
|
// Call remove-path with clique T
|
|
SymbolicBayesNet bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removePath(bayesTree[_T_], &bn, &orphans);
|
|
SymbolicFactorGraph factors(bn);
|
|
|
|
// Check expected outcome
|
|
SymbolicFactorGraph expected;
|
|
expected.emplace_shared<SymbolicFactor>(_E_, _L_, _B_);
|
|
expected.emplace_shared<SymbolicFactor>(_T_, _E_, _L_);
|
|
CHECK(assert_equal(expected, factors));
|
|
SymbolicBayesTree::Cliques expectedOrphans{bayesTree[_S_], bayesTree[_X_]};
|
|
CHECK(assert_container_equal(deref(expectedOrphans), deref(orphans)));
|
|
}
|
|
|
|
void getAllCliques(const SymbolicBayesTree::sharedClique& subtree,
|
|
SymbolicBayesTree::Cliques& cliques) {
|
|
// Check if subtree exists
|
|
if (subtree) {
|
|
cliques.push_back(subtree);
|
|
// Recursive call over all child cliques
|
|
for (SymbolicBayesTree::sharedClique& childClique : subtree->children) {
|
|
getAllCliques(childClique, cliques);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(BayesTree, shortcutCheck) {
|
|
const Key _A_ = 6, _B_ = 5, _C_ = 4, _D_ = 3, _E_ = 2, _F_ = 1, _G_ = 0;
|
|
auto chain = SymbolicFactorGraph(SymbolicFactor(_A_)) //
|
|
(SymbolicFactor(_B_, _A_)) //
|
|
(SymbolicFactor(_C_, _A_)) //
|
|
(SymbolicFactor(_D_, _C_)) //
|
|
(SymbolicFactor(_E_, _B_)) //
|
|
(SymbolicFactor(_F_, _E_)) //
|
|
(SymbolicFactor(_G_, _F_));
|
|
Ordering ordering{_G_, _F_, _E_, _D_, _C_, _B_, _A_};
|
|
SymbolicBayesTree bayesTree = *chain.eliminateMultifrontal(ordering);
|
|
|
|
// bayesTree.saveGraph("BT1.dot");
|
|
|
|
SymbolicBayesTree::sharedClique rootClique = bayesTree.roots().front();
|
|
// rootClique->printTree();
|
|
SymbolicBayesTree::Cliques allCliques;
|
|
getAllCliques(rootClique, allCliques);
|
|
|
|
for (SymbolicBayesTree::sharedClique& clique : allCliques) {
|
|
// clique->print("Clique#");
|
|
SymbolicBayesNet bn = clique->shortcut(rootClique);
|
|
// bn.print("Shortcut:\n");
|
|
// cout << endl;
|
|
}
|
|
|
|
// Check if all the cached shortcuts are cleared
|
|
rootClique->deleteCachedShortcuts();
|
|
for (SymbolicBayesTree::sharedClique& clique : allCliques) {
|
|
bool notCleared = clique->cachedSeparatorMarginal().has_value();
|
|
CHECK(notCleared == false);
|
|
}
|
|
EXPECT_LONGS_EQUAL(0, (long)rootClique->numCachedSeparatorMarginals());
|
|
|
|
// for(SymbolicBayesTree::sharedClique& clique: allCliques) {
|
|
// clique->print("Clique#");
|
|
// if(clique->cachedShortcut()){
|
|
// bn = clique->cachedShortcut().get();
|
|
// bn.print("Shortcut:\n");
|
|
// }
|
|
// else
|
|
// cout << "Not Initialized" << endl;
|
|
// cout << endl;
|
|
// }
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(BayesTree, removeTop) {
|
|
SymbolicBayesTree bayesTree = asiaBayesTree;
|
|
|
|
// create a new factor to be inserted
|
|
// std::shared_ptr<IndexFactor> newFactor(new IndexFactor(_S_,_B_));
|
|
|
|
// Remove the contaminated part of the Bayes tree
|
|
SymbolicBayesNet bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removeTop(Keys(_B_)(_S_), &bn, &orphans);
|
|
|
|
// Check expected outcome
|
|
SymbolicBayesNet expected;
|
|
expected += SymbolicConditional::FromKeys<KeyVector>(Keys(_E_)(_L_)(_B_), 3);
|
|
expected += SymbolicConditional::FromKeys<KeyVector>(Keys(_S_)(_B_)(_L_), 1);
|
|
CHECK(assert_equal(expected, bn));
|
|
|
|
SymbolicBayesTree::Cliques expectedOrphans{bayesTree[_T_], bayesTree[_X_]};
|
|
CHECK(assert_container_equal(deref(expectedOrphans), deref(orphans)));
|
|
|
|
// Try removeTop again with a factor that should not change a thing
|
|
// std::shared_ptr<IndexFactor> newFactor2(new IndexFactor(_B_));
|
|
SymbolicBayesNet bn2;
|
|
SymbolicBayesTree::Cliques orphans2;
|
|
bayesTree.removeTop(Keys(_B_), &bn2, &orphans2);
|
|
SymbolicFactorGraph factors2(bn2);
|
|
SymbolicFactorGraph expected2;
|
|
CHECK(assert_equal(expected2, factors2));
|
|
SymbolicBayesTree::Cliques expectedOrphans2;
|
|
CHECK(assert_container_equal(deref(expectedOrphans2), deref(orphans2)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(BayesTree, removeTop2) {
|
|
SymbolicBayesTree bayesTree = asiaBayesTree;
|
|
|
|
// create two factors to be inserted
|
|
// SymbolicFactorGraph newFactors;
|
|
// newFactors.push_factor(_B_);
|
|
// newFactors.push_factor(_S_);
|
|
|
|
// Remove the contaminated part of the Bayes tree
|
|
SymbolicBayesNet bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removeTop(Keys(_T_), &bn, &orphans);
|
|
|
|
// Check expected outcome
|
|
auto expected = SymbolicBayesNet(
|
|
SymbolicConditional::FromKeys<KeyVector>(Keys(_E_)(_L_)(_B_), 3))(
|
|
SymbolicConditional::FromKeys<KeyVector>(Keys(_T_)(_E_)(_L_), 1));
|
|
CHECK(assert_equal(expected, bn));
|
|
|
|
SymbolicBayesTree::Cliques expectedOrphans{bayesTree[_S_], bayesTree[_X_]};
|
|
CHECK(assert_container_equal(deref(expectedOrphans), deref(orphans)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(BayesTree, removeTop3) {
|
|
auto graph = SymbolicFactorGraph(SymbolicFactor(L(5)))(SymbolicFactor(
|
|
X(4), L(5)))(SymbolicFactor(X(2), X(4)))(SymbolicFactor(X(3), X(2)));
|
|
Ordering ordering{X(3), X(2), X(4), L(5)};
|
|
SymbolicBayesTree bayesTree = *graph.eliminateMultifrontal(ordering);
|
|
|
|
// remove all
|
|
SymbolicBayesNet bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removeTop(Keys(L(5))(X(4))(X(2))(X(3)), &bn, &orphans);
|
|
|
|
auto expectedBn = SymbolicBayesNet(
|
|
SymbolicConditional::FromKeys<KeyVector>(Keys(X(4))(L(5)), 2))(
|
|
SymbolicConditional(X(2), X(4)))(SymbolicConditional(X(3), X(2)));
|
|
EXPECT(assert_equal(expectedBn, bn));
|
|
EXPECT(orphans.empty());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(BayesTree, removeTop4) {
|
|
auto graph = SymbolicFactorGraph(SymbolicFactor(L(5)))(SymbolicFactor(
|
|
X(4), L(5)))(SymbolicFactor(X(2), X(4)))(SymbolicFactor(X(3), X(2)));
|
|
Ordering ordering{X(3), X(2), X(4), L(5)};
|
|
SymbolicBayesTree bayesTree = *graph.eliminateMultifrontal(ordering);
|
|
|
|
// remove all
|
|
SymbolicBayesNet bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removeTop(Keys(X(2))(L(5))(X(4))(X(3)), &bn, &orphans);
|
|
|
|
auto expectedBn = SymbolicBayesNet(
|
|
SymbolicConditional::FromKeys<KeyVector>(Keys(X(4))(L(5)), 2))(
|
|
SymbolicConditional(X(2), X(4)))(SymbolicConditional(X(3), X(2)));
|
|
EXPECT(assert_equal(expectedBn, bn));
|
|
EXPECT(orphans.empty());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(BayesTree, removeTop5) {
|
|
// Remove top called with variables that are not in the Bayes tree
|
|
auto graph = SymbolicFactorGraph(SymbolicFactor(L(5)))(SymbolicFactor(
|
|
X(4), L(5)))(SymbolicFactor(X(2), X(4)))(SymbolicFactor(X(3), X(2)));
|
|
Ordering ordering{X(3), X(2), X(4), L(5)};
|
|
SymbolicBayesTree bayesTree = *graph.eliminateMultifrontal(ordering);
|
|
|
|
// Remove nonexistant
|
|
SymbolicBayesNet bn;
|
|
SymbolicBayesTree::Cliques orphans;
|
|
bayesTree.removeTop(Keys(X(10)), &bn, &orphans);
|
|
|
|
SymbolicBayesNet expectedBn;
|
|
EXPECT(assert_equal(expectedBn, bn));
|
|
EXPECT(orphans.empty());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(SymbolicBayesTree, thinTree) {
|
|
// create a thin-tree Bayes net, a la Jean-Guillaume
|
|
SymbolicBayesNet bayesNet;
|
|
bayesNet.emplace_shared<SymbolicConditional>(14);
|
|
|
|
bayesNet.emplace_shared<SymbolicConditional>(13, 14);
|
|
bayesNet.emplace_shared<SymbolicConditional>(12, 14);
|
|
|
|
bayesNet.emplace_shared<SymbolicConditional>(11, 13, 14);
|
|
bayesNet.emplace_shared<SymbolicConditional>(10, 13, 14);
|
|
bayesNet.emplace_shared<SymbolicConditional>(9, 12, 14);
|
|
bayesNet.emplace_shared<SymbolicConditional>(8, 12, 14);
|
|
|
|
bayesNet.emplace_shared<SymbolicConditional>(7, 11, 13);
|
|
bayesNet.emplace_shared<SymbolicConditional>(6, 11, 13);
|
|
bayesNet.emplace_shared<SymbolicConditional>(5, 10, 13);
|
|
bayesNet.emplace_shared<SymbolicConditional>(4, 10, 13);
|
|
|
|
bayesNet.emplace_shared<SymbolicConditional>(3, 9, 12);
|
|
bayesNet.emplace_shared<SymbolicConditional>(2, 9, 12);
|
|
bayesNet.emplace_shared<SymbolicConditional>(1, 8, 12);
|
|
bayesNet.emplace_shared<SymbolicConditional>(0, 8, 12);
|
|
|
|
if (debug) {
|
|
GTSAM_PRINT(bayesNet);
|
|
bayesNet.saveGraph("/tmp/symbolicBayesNet.dot");
|
|
}
|
|
|
|
// create a BayesTree out of a Bayes net
|
|
SymbolicBayesTree bayesTree =
|
|
*SymbolicFactorGraph(bayesNet).eliminateMultifrontal();
|
|
if (debug) {
|
|
GTSAM_PRINT(bayesTree);
|
|
bayesTree.saveGraph("/tmp/SymbolicBayesTree.dot");
|
|
}
|
|
|
|
SymbolicBayesTree::Clique::shared_ptr R = bayesTree.roots().front();
|
|
|
|
{
|
|
// check shortcut P(S9||R) to root
|
|
SymbolicBayesTree::Clique::shared_ptr c = bayesTree[9];
|
|
SymbolicBayesNet shortcut = c->shortcut(R);
|
|
auto expected = SymbolicBayesNet(SymbolicConditional(14, 11, 13));
|
|
EXPECT(assert_equal(expected, shortcut));
|
|
}
|
|
|
|
{
|
|
// check shortcut P(S8||R) to root
|
|
SymbolicBayesTree::Clique::shared_ptr c = bayesTree[8];
|
|
SymbolicBayesNet shortcut = c->shortcut(R);
|
|
auto expected = SymbolicBayesNet(SymbolicConditional(12, 14))(
|
|
SymbolicConditional(14, 11, 13));
|
|
EXPECT(assert_equal(expected, shortcut));
|
|
}
|
|
|
|
{
|
|
// check shortcut P(S4||R) to root
|
|
SymbolicBayesTree::Clique::shared_ptr c = bayesTree[4];
|
|
SymbolicBayesNet shortcut = c->shortcut(R);
|
|
auto expected = SymbolicBayesNet(SymbolicConditional(10, 11, 13));
|
|
EXPECT(assert_equal(expected, shortcut));
|
|
}
|
|
|
|
{
|
|
// check shortcut P(S2||R) to root
|
|
SymbolicBayesTree::Clique::shared_ptr c = bayesTree[2];
|
|
SymbolicBayesNet shortcut = c->shortcut(R);
|
|
auto expected = SymbolicBayesNet(SymbolicConditional(9, 11, 12, 13))(
|
|
SymbolicConditional(12, 11, 13));
|
|
EXPECT(assert_equal(expected, shortcut));
|
|
}
|
|
|
|
{
|
|
// check shortcut P(S0||R) to root
|
|
SymbolicBayesTree::Clique::shared_ptr c = bayesTree[0];
|
|
SymbolicBayesNet shortcut = c->shortcut(R);
|
|
auto expected = SymbolicBayesNet(SymbolicConditional(8, 11, 12, 13))(
|
|
SymbolicConditional(12, 11, 13));
|
|
EXPECT(assert_equal(expected, shortcut));
|
|
}
|
|
|
|
SymbolicBayesNet::shared_ptr actualJoint;
|
|
|
|
// Check joint P(8,2)
|
|
if (false) { // TODO, not disjoint
|
|
actualJoint = bayesTree.jointBayesNet(8, 2);
|
|
SymbolicBayesNet expected;
|
|
expected.emplace_shared<SymbolicConditional>(8);
|
|
expected.emplace_shared<SymbolicConditional>(2, 8);
|
|
EXPECT(assert_equal(expected, *actualJoint));
|
|
}
|
|
|
|
// Check joint P(1,2)
|
|
if (false) { // TODO, not disjoint
|
|
actualJoint = bayesTree.jointBayesNet(1, 2);
|
|
SymbolicBayesNet expected;
|
|
expected.emplace_shared<SymbolicConditional>(2);
|
|
expected.emplace_shared<SymbolicConditional>(1, 2);
|
|
EXPECT(assert_equal(expected, *actualJoint));
|
|
}
|
|
|
|
// Check joint P(2,6)
|
|
if (true) {
|
|
actualJoint = bayesTree.jointBayesNet(2, 6);
|
|
SymbolicBayesNet expected;
|
|
expected.emplace_shared<SymbolicConditional>(2, 6);
|
|
expected.emplace_shared<SymbolicConditional>(6);
|
|
EXPECT(assert_equal(expected, *actualJoint));
|
|
}
|
|
|
|
// Check joint P(4,6)
|
|
if (false) { // TODO, not disjoint
|
|
actualJoint = bayesTree.jointBayesNet(4, 6);
|
|
SymbolicBayesNet expected;
|
|
expected.emplace_shared<SymbolicConditional>(6);
|
|
expected.emplace_shared<SymbolicConditional>(4, 6);
|
|
EXPECT(assert_equal(expected, *actualJoint));
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(SymbolicBayesTree, forest_joint) {
|
|
// Create forest
|
|
sharedClique root1 = LeafClique(Keys(1), 1);
|
|
sharedClique root2 = LeafClique(Keys(2), 1);
|
|
SymbolicBayesTree bayesTree;
|
|
bayesTree.insertRoot(root1);
|
|
bayesTree.insertRoot(root2);
|
|
|
|
// Check joint
|
|
auto expected =
|
|
SymbolicBayesNet(SymbolicConditional(1))(SymbolicConditional(2));
|
|
SymbolicBayesNet actual = *bayesTree.jointBayesNet(1, 2);
|
|
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* *
|
|
Bayes tree for smoother with "natural" ordering:
|
|
C1 5 6
|
|
C2 4 : 5
|
|
C3 3 : 4
|
|
C4 2 : 3
|
|
C5 1 : 2
|
|
C6 0 : 1
|
|
**************************************************************************** */
|
|
|
|
TEST(SymbolicBayesTree, linear_smoother_shortcuts) {
|
|
// Create smoother with 7 nodes
|
|
SymbolicFactorGraph smoother;
|
|
smoother.push_factor(0);
|
|
smoother.push_factor(0, 1);
|
|
smoother.push_factor(1, 2);
|
|
smoother.push_factor(2, 3);
|
|
smoother.push_factor(3, 4);
|
|
smoother.push_factor(4, 5);
|
|
smoother.push_factor(5, 6);
|
|
|
|
// Eliminate in numerical order 0..6
|
|
Ordering ordering(smoother.keys());
|
|
SymbolicBayesNet bayesNet = *smoother.eliminateSequential(ordering);
|
|
|
|
if (debug) {
|
|
GTSAM_PRINT(bayesNet);
|
|
bayesNet.saveGraph("/tmp/symbolicBayesNet.dot");
|
|
}
|
|
|
|
// create a BayesTree
|
|
SymbolicBayesTree bayesTree = *smoother.eliminateMultifrontal(ordering);
|
|
if (debug) {
|
|
GTSAM_PRINT(bayesTree);
|
|
bayesTree.saveGraph("/tmp/SymbolicBayesTree.dot");
|
|
}
|
|
|
|
SymbolicBayesTree::Clique::shared_ptr R = bayesTree.roots().front();
|
|
|
|
{
|
|
// check shortcut P(S2||R) to root
|
|
SymbolicBayesTree::Clique::shared_ptr c =
|
|
bayesTree[4]; // 4 is frontal in C2
|
|
SymbolicBayesNet shortcut = c->shortcut(R);
|
|
SymbolicBayesNet expected;
|
|
EXPECT(assert_equal(expected, shortcut));
|
|
}
|
|
|
|
{
|
|
// check shortcut P(S3||R) to root
|
|
SymbolicBayesTree::Clique::shared_ptr c =
|
|
bayesTree[3]; // 3 is frontal in C3
|
|
SymbolicBayesNet shortcut = c->shortcut(R);
|
|
auto expected = SymbolicBayesNet(SymbolicConditional(4, 5));
|
|
EXPECT(assert_equal(expected, shortcut));
|
|
}
|
|
|
|
{
|
|
// check shortcut P(S4||R) to root
|
|
SymbolicBayesTree::Clique::shared_ptr c =
|
|
bayesTree[2]; // 2 is frontal in C4
|
|
SymbolicBayesNet shortcut = c->shortcut(R);
|
|
auto expected = SymbolicBayesNet(SymbolicConditional(3, 5));
|
|
EXPECT(assert_equal(expected, shortcut));
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// from testSymbolicJunctionTree, which failed at one point
|
|
TEST(SymbolicBayesTree, complicatedMarginal) {
|
|
// Create the conditionals to go in the BayesTree
|
|
sharedClique cur;
|
|
sharedClique root = LeafClique(Keys(11)(12), 2);
|
|
cur = root;
|
|
|
|
root->children.push_back(LeafClique(Keys(9)(10)(11)(12), 2));
|
|
root->children.back()->parent_ = root;
|
|
|
|
root->children.push_back(LeafClique(Keys(7)(8)(11), 2));
|
|
root->children.back()->parent_ = root;
|
|
cur = root->children.back();
|
|
|
|
cur->children.push_back(LeafClique(Keys(5)(6)(7)(8), 2));
|
|
cur->children.back()->parent_ = cur;
|
|
cur = cur->children.back();
|
|
|
|
cur->children.push_back(LeafClique(Keys(3)(4)(6), 2));
|
|
cur->children.back()->parent_ = cur;
|
|
|
|
cur->children.push_back(LeafClique(Keys(1)(2)(5), 2));
|
|
cur->children.back()->parent_ = cur;
|
|
|
|
// Create Bayes Tree
|
|
SymbolicBayesTree bt;
|
|
bt.insertRoot(root);
|
|
if (debug) {
|
|
GTSAM_PRINT(bt);
|
|
bt.saveGraph("/tmp/SymbolicBayesTree.dot");
|
|
}
|
|
|
|
// Shortcut on 9
|
|
{
|
|
SymbolicBayesTree::Clique::shared_ptr c = bt[9];
|
|
SymbolicBayesNet shortcut = c->shortcut(root);
|
|
EXPECT(assert_equal(SymbolicBayesNet(), shortcut));
|
|
}
|
|
|
|
// Shortcut on 7
|
|
{
|
|
SymbolicBayesTree::Clique::shared_ptr c = bt[7];
|
|
SymbolicBayesNet shortcut = c->shortcut(root);
|
|
EXPECT(assert_equal(SymbolicBayesNet(), shortcut));
|
|
}
|
|
|
|
// Shortcut on 5
|
|
{
|
|
SymbolicBayesTree::Clique::shared_ptr c = bt[5];
|
|
SymbolicBayesNet shortcut = c->shortcut(root);
|
|
auto expected = SymbolicBayesNet(SymbolicConditional(7, 8, 11))(
|
|
SymbolicConditional(8, 11));
|
|
EXPECT(assert_equal(expected, shortcut));
|
|
}
|
|
|
|
// Shortcut on 3
|
|
{
|
|
SymbolicBayesTree::Clique::shared_ptr c = bt[3];
|
|
SymbolicBayesNet shortcut = c->shortcut(root);
|
|
auto expected = SymbolicBayesNet(SymbolicConditional(6, 11));
|
|
EXPECT(assert_equal(expected, shortcut));
|
|
}
|
|
|
|
// Shortcut on 1
|
|
{
|
|
SymbolicBayesTree::Clique::shared_ptr c = bt[1];
|
|
SymbolicBayesNet shortcut = c->shortcut(root);
|
|
auto expected = SymbolicBayesNet(SymbolicConditional(5, 11));
|
|
EXPECT(assert_equal(expected, shortcut));
|
|
}
|
|
|
|
// Marginal on 5
|
|
{
|
|
SymbolicFactor::shared_ptr actual = bt.marginalFactor(5);
|
|
EXPECT(assert_equal(SymbolicFactor(5), *actual, 1e-1));
|
|
}
|
|
|
|
// Shortcut on 6
|
|
{
|
|
SymbolicFactor::shared_ptr actual = bt.marginalFactor(6);
|
|
EXPECT(assert_equal(SymbolicFactor(6), *actual, 1e-1));
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(SymbolicBayesTree, COLAMDvsMETIS) {
|
|
// create circular graph
|
|
SymbolicFactorGraph sfg;
|
|
sfg.push_factor(0, 1);
|
|
sfg.push_factor(1, 2);
|
|
sfg.push_factor(2, 3);
|
|
sfg.push_factor(3, 4);
|
|
sfg.push_factor(4, 5);
|
|
sfg.push_factor(0, 5);
|
|
|
|
// COLAMD
|
|
{
|
|
Ordering ordering = Ordering::Create(Ordering::COLAMD, sfg);
|
|
EXPECT(assert_equal(Ordering{0, 5, 1, 4, 2, 3}, ordering));
|
|
|
|
// - P( 4 2 3)
|
|
// | - P( 1 | 2 4)
|
|
// | | - P( 5 | 1 4)
|
|
// | | | - P( 0 | 1 5)
|
|
SymbolicBayesTree expected;
|
|
expected.insertRoot( //
|
|
NodeClique(
|
|
Keys(4)(2)(3), 3,
|
|
Children( //
|
|
NodeClique(
|
|
Keys(1)(2)(4), 1,
|
|
Children( //
|
|
NodeClique(Keys(5)(1)(4), 1,
|
|
Children( //
|
|
LeafClique(Keys(0)(1)(5), 1))))))));
|
|
|
|
SymbolicBayesTree actual = *sfg.eliminateMultifrontal(ordering);
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
|
|
#ifdef GTSAM_SUPPORT_NESTED_DISSECTION
|
|
// METIS
|
|
{
|
|
Ordering ordering = Ordering::Create(Ordering::METIS, sfg);
|
|
// Linux and Mac split differently when using Metis
|
|
#if defined(__APPLE__)
|
|
EXPECT(assert_equal(Ordering{5, 4, 2, 1, 0, 3}, ordering));
|
|
#elif defined(_WIN32)
|
|
EXPECT(assert_equal(Ordering{4, 3, 1, 0, 5, 2}, ordering));
|
|
#else
|
|
EXPECT(assert_equal(Ordering{3, 2, 5, 0, 4, 1}, ordering));
|
|
#endif
|
|
|
|
// - P( 1 0 3)
|
|
// | - P( 4 | 0 3)
|
|
// | | - P( 5 | 0 4)
|
|
// | - P( 2 | 1 3)
|
|
SymbolicBayesTree expected;
|
|
#if defined(__APPLE__)
|
|
expected.insertRoot(
|
|
NodeClique(Keys(1)(0)(3), 3,
|
|
Children( //
|
|
NodeClique(Keys(4)(0)(3), 1, //
|
|
{LeafClique(Keys(5)(0)(4), 1)}))(
|
|
LeafClique(Keys(2)(1)(3), 1))));
|
|
#elif defined(_WIN32)
|
|
expected.insertRoot(
|
|
NodeClique(Keys(3)(5)(2), 3,
|
|
Children( //
|
|
NodeClique(Keys(4)(3)(5), 1, //
|
|
{LeafClique(Keys(0)(2)(5), 1)}))(
|
|
LeafClique(Keys(1)(0)(2), 1))));
|
|
#else
|
|
expected.insertRoot(
|
|
NodeClique(Keys(2)(4)(1), 3,
|
|
Children( //
|
|
NodeClique(Keys(0)(1)(4), 1, //
|
|
{LeafClique(Keys(5)(0)(4), 1)}))(
|
|
LeafClique(Keys(3)(2)(4), 1))));
|
|
#endif
|
|
SymbolicBayesTree actual = *sfg.eliminateMultifrontal(ordering);
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|