1051 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			1051 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file    testGaussianISAM2.cpp
 | |
|  * @brief   Unit tests for GaussianISAM2
 | |
|  * @author  Michael Kaess
 | |
|  */
 | |
| 
 | |
| #include <gtsam/nonlinear/ISAM2.h>
 | |
| 
 | |
| #include <tests/smallExample.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/sam/BearingRangeFactor.h>
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| #include <gtsam/geometry/Pose3.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/Marginals.h>
 | |
| #include <gtsam/linear/GaussianBayesNet.h>
 | |
| #include <gtsam/linear/GaussianBayesTree.h>
 | |
| #include <gtsam/linear/GaussianFactorGraph.h>
 | |
| #include <gtsam/inference/Ordering.h>
 | |
| #include <gtsam/base/debug.h>
 | |
| #include <gtsam/base/TestableAssertions.h>
 | |
| #include <gtsam/base/treeTraversal-inst.h>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include <cassert>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using std::shared_ptr;
 | |
| 
 | |
| static const SharedNoiseModel model;
 | |
| 
 | |
| //  SETDEBUG("ISAM2 update", true);
 | |
| //  SETDEBUG("ISAM2 update verbose", true);
 | |
| //  SETDEBUG("ISAM2 recalculate", true);
 | |
| 
 | |
| // Set up parameters
 | |
| SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.1, 0.1, M_PI/100.0).finished());
 | |
| SharedDiagonal brNoise = noiseModel::Diagonal::Sigmas((Vector(2) << M_PI/100.0, 0.1).finished());
 | |
| 
 | |
| ISAM2 createSlamlikeISAM2(
 | |
|     Values* init_values = nullptr,
 | |
|     NonlinearFactorGraph* full_graph = nullptr,
 | |
|     const ISAM2Params& params = ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0,
 | |
|                                             0, false, true,
 | |
|                                             ISAM2Params::CHOLESKY, true,
 | |
|                                             DefaultKeyFormatter, true),
 | |
|     size_t maxPoses = 10) {
 | |
|   // These variables will be reused and accumulate factors and values
 | |
|   ISAM2 isam(params);
 | |
|   Values fullinit;
 | |
|   NonlinearFactorGraph fullgraph;
 | |
| 
 | |
|   // i keeps track of the time step
 | |
|   size_t i = 0;
 | |
| 
 | |
|   // Add a prior at time 0 and update isam
 | |
|   {
 | |
|     NonlinearFactorGraph newfactors;
 | |
|     newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
 | |
|     fullgraph.push_back(newfactors);
 | |
| 
 | |
|     Values init;
 | |
|     init.insert((0), Pose2(0.01, 0.01, 0.01));
 | |
|     fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
 | |
| 
 | |
|     isam.update(newfactors, init);
 | |
|   }
 | |
| 
 | |
|   if(i > maxPoses)
 | |
|     goto done;
 | |
| 
 | |
|   // Add odometry from time 0 to time 5
 | |
|   for( ; i<5; ++i) {
 | |
|     NonlinearFactorGraph newfactors;
 | |
|     newfactors.emplace_shared<BetweenFactor<Pose2>>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | |
|     fullgraph.push_back(newfactors);
 | |
| 
 | |
|     Values init;
 | |
|     init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | |
|     fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | |
| 
 | |
|     isam.update(newfactors, init);
 | |
| 
 | |
|     if(i > maxPoses)
 | |
|       goto done;
 | |
|   }
 | |
| 
 | |
|   if(i > maxPoses)
 | |
|     goto done;
 | |
| 
 | |
|   // Add odometry from time 5 to 6 and landmark measurement at time 5
 | |
|   {
 | |
|     NonlinearFactorGraph newfactors;
 | |
|     newfactors.emplace_shared<BetweenFactor<Pose2>>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | |
|     newfactors.emplace_shared<BearingRangeFactor<Pose2, Point2>>(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
 | |
|     newfactors.emplace_shared<BearingRangeFactor<Pose2, Point2>>(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
 | |
|     fullgraph.push_back(newfactors);
 | |
| 
 | |
|     Values init;
 | |
|     init.insert((i+1), Pose2(1.01, 0.01, 0.01));
 | |
|     init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
 | |
|     init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
 | |
|     fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
 | |
|     fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
 | |
|     fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
 | |
| 
 | |
|     isam.update(newfactors, init);
 | |
|     ++ i;
 | |
|   }
 | |
| 
 | |
|   if(i > maxPoses)
 | |
|     goto done;
 | |
| 
 | |
|   // Add odometry from time 6 to time 10
 | |
|   for( ; i<10; ++i) {
 | |
|     NonlinearFactorGraph newfactors;
 | |
|     newfactors.emplace_shared<BetweenFactor<Pose2>>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | |
|     fullgraph.push_back(newfactors);
 | |
| 
 | |
|     Values init;
 | |
|     init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | |
|     fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | |
| 
 | |
|     isam.update(newfactors, init);
 | |
| 
 | |
|     if(i > maxPoses)
 | |
|       goto done;
 | |
|   }
 | |
| 
 | |
|   if(i > maxPoses)
 | |
|     goto done;
 | |
| 
 | |
|   // Add odometry from time 10 to 11 and landmark measurement at time 10
 | |
|   {
 | |
|     NonlinearFactorGraph newfactors;
 | |
|     newfactors.emplace_shared<BetweenFactor<Pose2>>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | |
|     newfactors.emplace_shared<BearingRangeFactor<Pose2, Point2>>(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
 | |
|     newfactors.emplace_shared<BearingRangeFactor<Pose2, Point2>>(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
 | |
|     fullgraph.push_back(newfactors);
 | |
| 
 | |
|     Values init;
 | |
|     init.insert((i+1), Pose2(6.9, 0.1, 0.01));
 | |
|     fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
 | |
| 
 | |
|     isam.update(newfactors, init);
 | |
|     ++ i;
 | |
|   }
 | |
| 
 | |
| done:
 | |
| 
 | |
|   if (full_graph)
 | |
|     *full_graph = fullgraph;
 | |
| 
 | |
|   if (init_values)
 | |
|     *init_values = fullinit;
 | |
| 
 | |
|   return isam;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| //TEST(ISAM2, CheckRelinearization) {
 | |
| //
 | |
| //  typedef GaussianISAM2<Values>::Impl Impl;
 | |
| //
 | |
| //  // Create values where indices 1 and 3 are above the threshold of 0.1
 | |
| //  VectorValues values;
 | |
| //  values.reserve(4, 10);
 | |
| //  values.push_back_preallocated(Vector2(0.09, 0.09));
 | |
| //  values.push_back_preallocated(Vector3(0.11, 0.11, 0.09));
 | |
| //  values.push_back_preallocated(Vector3(0.09, 0.09, 0.09));
 | |
| //  values.push_back_preallocated(Vector2(0.11, 0.11));
 | |
| //
 | |
| //  // Create a permutation
 | |
| //  Permutation permutation(4);
 | |
| //  permutation[0] = 2;
 | |
| //  permutation[1] = 0;
 | |
| //  permutation[2] = 1;
 | |
| //  permutation[3] = 3;
 | |
| //
 | |
| //  Permuted<VectorValues> permuted(permutation, values);
 | |
| //
 | |
| //  // After permutation, the indices above the threshold are 2 and 2
 | |
| //  KeySet expected;
 | |
| //  expected.insert(2);
 | |
| //  expected.insert(3);
 | |
| //
 | |
| //  // Indices checked by CheckRelinearization
 | |
| //  KeySet actual = Impl::CheckRelinearization(permuted, 0.1);
 | |
| //
 | |
| //  EXPECT(assert_equal(expected, actual));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| struct ConsistencyVisitor
 | |
| {
 | |
|   bool consistent;
 | |
|   const ISAM2& isam;
 | |
|   ConsistencyVisitor(const ISAM2& isam) :
 | |
|     consistent(true), isam(isam) {}
 | |
|   int operator()(const ISAM2::sharedClique& node, int& parentData)
 | |
|   {
 | |
|     if(find(isam.roots().begin(), isam.roots().end(), node) == isam.roots().end())
 | |
|     {
 | |
|       if(node->parent_.expired())
 | |
|         consistent = false;
 | |
|       if(find(node->parent()->children.begin(), node->parent()->children.end(), node) == node->parent()->children.end())
 | |
|         consistent = false;
 | |
|     }
 | |
|     for(Key j: node->conditional()->frontals())
 | |
|     {
 | |
|       if(isam.nodes().at(j).get() != node.get())
 | |
|         consistent = false;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| bool isam_check(const NonlinearFactorGraph& fullgraph, const Values& fullinit, const ISAM2& isam, Test& test, TestResult& result) {
 | |
| 
 | |
|   TestResult& result_ = result;
 | |
|   const string name_ = test.getName();
 | |
| 
 | |
|   Values actual = isam.calculateEstimate();
 | |
|   Values expected = fullinit.retract(fullgraph.linearize(fullinit)->optimize());
 | |
| 
 | |
|   bool isamEqual = assert_equal(expected, actual);
 | |
| 
 | |
|   // Check information
 | |
|   GaussianFactorGraph isamGraph(isam);
 | |
|   isamGraph.push_back(isam.roots().front()->cachedFactor_);
 | |
|   Matrix expectedHessian = fullgraph.linearize(isam.getLinearizationPoint())->augmentedHessian();
 | |
|   Matrix actualHessian = isamGraph.augmentedHessian();
 | |
|   expectedHessian.bottomRightCorner(1,1) = actualHessian.bottomRightCorner(1,1);
 | |
|   bool isamTreeEqual = assert_equal(expectedHessian, actualHessian);
 | |
| 
 | |
|   // Check consistency
 | |
|   ConsistencyVisitor visitor(isam);
 | |
|   int data; // Unused
 | |
|   treeTraversal::DepthFirstForest(isam, data, visitor);
 | |
|   bool consistent = visitor.consistent;
 | |
| 
 | |
|   // The following two checks make sure that the cached gradients are maintained and used correctly
 | |
| 
 | |
|   // Check gradient at each node
 | |
|   bool nodeGradientsOk = true;
 | |
|   for (const auto& [key, clique] : isam.nodes()) {
 | |
|     // Compute expected gradient
 | |
|     GaussianFactorGraph jfg;
 | |
|     jfg.push_back(clique->conditional());
 | |
|     VectorValues expectedGradient = jfg.gradientAtZero();
 | |
|     // Compare with actual gradients
 | |
|     DenseIndex variablePosition = 0;
 | |
|     for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
 | |
|       const DenseIndex dim = clique->conditional()->getDim(jit);
 | |
|       Vector actual = clique->gradientContribution().segment(variablePosition, dim);
 | |
|       bool gradOk = assert_equal(expectedGradient[*jit], actual);
 | |
|       EXPECT(gradOk);
 | |
|       nodeGradientsOk = nodeGradientsOk && gradOk;
 | |
|       variablePosition += dim;
 | |
|     }
 | |
|     bool dimOk = clique->gradientContribution().rows() == variablePosition;
 | |
|     EXPECT(dimOk);
 | |
|     nodeGradientsOk = nodeGradientsOk && dimOk;
 | |
|   }
 | |
| 
 | |
|   // Check gradient
 | |
|   VectorValues expectedGradient = GaussianFactorGraph(isam).gradientAtZero();
 | |
|   VectorValues expectedGradient2 = GaussianFactorGraph(isam).gradient(VectorValues::Zero(expectedGradient));
 | |
|   VectorValues actualGradient = isam.gradientAtZero();
 | |
|   bool expectedGradOk = assert_equal(expectedGradient2, expectedGradient);
 | |
|   EXPECT(expectedGradOk);
 | |
|   bool totalGradOk = assert_equal(expectedGradient, actualGradient);
 | |
|   EXPECT(totalGradOk);
 | |
| 
 | |
|   return nodeGradientsOk && expectedGradOk && totalGradOk && isamEqual && isamTreeEqual && consistent;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, simple)
 | |
| {
 | |
|   for(size_t i = 0; i < 10; ++i) {
 | |
|     // These variables will be reused and accumulate factors and values
 | |
|     Values fullinit;
 | |
|     NonlinearFactorGraph fullgraph;
 | |
|     ISAM2 isam = createSlamlikeISAM2(&fullinit, &fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false), i);
 | |
| 
 | |
|     // Compare solutions
 | |
|     EXPECT(isam_check(fullgraph, fullinit, isam, *this, result_));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, slamlike_solution_gaussnewton)
 | |
| {
 | |
|   // These variables will be reused and accumulate factors and values
 | |
|   Values fullinit;
 | |
|   NonlinearFactorGraph fullgraph;
 | |
|   ISAM2 isam = createSlamlikeISAM2(&fullinit, &fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
 | |
| 
 | |
|   // Compare solutions
 | |
|   CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, slamlike_solution_dogleg)
 | |
| {
 | |
|   // These variables will be reused and accumulate factors and values
 | |
|   Values fullinit;
 | |
|   NonlinearFactorGraph fullgraph;
 | |
|   ISAM2 isam = createSlamlikeISAM2(&fullinit, &fullgraph, ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false));
 | |
| 
 | |
|   // Compare solutions
 | |
|   CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, slamlike_solution_gaussnewton_qr)
 | |
| {
 | |
|   // These variables will be reused and accumulate factors and values
 | |
|   Values fullinit;
 | |
|   NonlinearFactorGraph fullgraph;
 | |
|   ISAM2 isam = createSlamlikeISAM2(&fullinit, &fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, false, ISAM2Params::QR));
 | |
| 
 | |
|   // Compare solutions
 | |
|   CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, slamlike_solution_dogleg_qr)
 | |
| {
 | |
|   // These variables will be reused and accumulate factors and values
 | |
|   Values fullinit;
 | |
|   NonlinearFactorGraph fullgraph;
 | |
|   ISAM2 isam = createSlamlikeISAM2(&fullinit, &fullgraph, ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false, false, ISAM2Params::QR));
 | |
| 
 | |
|   // Compare solutions
 | |
|   CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, clone) {
 | |
| 
 | |
|   ISAM2 clone1;
 | |
| 
 | |
|   {
 | |
|     ISAM2 isam = createSlamlikeISAM2();
 | |
|     clone1 = isam;
 | |
| 
 | |
|     ISAM2 clone2(isam);
 | |
| 
 | |
|     // Modify original isam
 | |
|     NonlinearFactorGraph factors;
 | |
|     factors.emplace_shared<BetweenFactor<Pose2>>(0, 10,
 | |
|         isam.calculateEstimate<Pose2>(0).between(isam.calculateEstimate<Pose2>(10)), noiseModel::Unit::Create(3));
 | |
|     isam.update(factors);
 | |
| 
 | |
|     CHECK(assert_equal(createSlamlikeISAM2(), clone2));
 | |
|   }
 | |
| 
 | |
|   // This is to (perhaps unsuccessfully) try to currupt unallocated memory referenced
 | |
|   // if the references in the iSAM2 copy point to the old instance which deleted at
 | |
|   // the end of the {...} section above.
 | |
|   ISAM2 temp = createSlamlikeISAM2();
 | |
| 
 | |
|   CHECK(assert_equal(createSlamlikeISAM2(), clone1));
 | |
|   CHECK(assert_equal(clone1, temp));
 | |
| 
 | |
|   // Check clone empty
 | |
|   ISAM2 isam;
 | |
|   clone1 = isam;
 | |
|   CHECK(assert_equal(ISAM2(), clone1));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, removeFactors)
 | |
| {
 | |
|   // This test builds a graph in the same way as the "slamlike" test above, but
 | |
|   // then removes the 2nd-to-last landmark measurement
 | |
| 
 | |
|   // These variables will be reused and accumulate factors and values
 | |
|   Values fullinit;
 | |
|   NonlinearFactorGraph fullgraph;
 | |
|   ISAM2 isam = createSlamlikeISAM2(&fullinit, &fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
 | |
| 
 | |
|   // Remove the 2nd measurement on landmark 0 (Key 100)
 | |
|   FactorIndices toRemove;
 | |
|   toRemove.push_back(12);
 | |
|   isam.update(NonlinearFactorGraph(), Values(), toRemove);
 | |
| 
 | |
|   // Remove the factor from the full system
 | |
|   fullgraph.remove(12);
 | |
| 
 | |
|   // Compare solutions
 | |
|   CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, removeVariables)
 | |
| {
 | |
|   // These variables will be reused and accumulate factors and values
 | |
|   Values fullinit;
 | |
|   NonlinearFactorGraph fullgraph;
 | |
|   ISAM2 isam = createSlamlikeISAM2(&fullinit, &fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
 | |
| 
 | |
|   // Remove the measurement on landmark 0 (Key 100)
 | |
|   FactorIndices toRemove;
 | |
|   toRemove.push_back(7);
 | |
|   toRemove.push_back(14);
 | |
|   isam.update(NonlinearFactorGraph(), Values(), toRemove);
 | |
| 
 | |
|   // Remove the factors and variable from the full system
 | |
|   fullgraph.remove(7);
 | |
|   fullgraph.remove(14);
 | |
|   fullinit.erase(100);
 | |
| 
 | |
|   // Compare solutions
 | |
|   CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, swapFactors)
 | |
| {
 | |
|   // This test builds a graph in the same way as the "slamlike" test above, but
 | |
|   // then swaps the 2nd-to-last landmark measurement with a different one
 | |
| 
 | |
|   Values fullinit;
 | |
|   NonlinearFactorGraph fullgraph;
 | |
|   ISAM2 isam = createSlamlikeISAM2(&fullinit, &fullgraph);
 | |
| 
 | |
|   // Remove the measurement on landmark 0 and replace with a different one
 | |
|   {
 | |
|     size_t swap_idx = isam.getFactorsUnsafe().size()-2;
 | |
|     FactorIndices toRemove;
 | |
|     toRemove.push_back(swap_idx);
 | |
|     fullgraph.remove(swap_idx);
 | |
| 
 | |
|     NonlinearFactorGraph swapfactors;
 | |
| //    swapfactors += BearingRange<Pose2,Point2>(10, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise; // original factor
 | |
|     swapfactors.emplace_shared<BearingRangeFactor<Pose2, Point2>>(10, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 5.0, brNoise);
 | |
|     fullgraph.push_back(swapfactors);
 | |
|     isam.update(swapfactors, Values(), toRemove);
 | |
|   }
 | |
| 
 | |
|   // Compare solutions
 | |
|   EXPECT(assert_equal(fullgraph, NonlinearFactorGraph(isam.getFactorsUnsafe())));
 | |
|   EXPECT(isam_check(fullgraph, fullinit, isam, *this, result_));
 | |
| 
 | |
|   // Check gradient at each node
 | |
|   for (const auto& [key, clique]: isam.nodes()) {
 | |
|     // Compute expected gradient
 | |
|     GaussianFactorGraph jfg;
 | |
|     jfg.push_back(clique->conditional());
 | |
|     VectorValues expectedGradient = jfg.gradientAtZero();
 | |
|     // Compare with actual gradients
 | |
|     DenseIndex variablePosition = 0;
 | |
|     for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
 | |
|       const DenseIndex dim = clique->conditional()->getDim(jit);
 | |
|       Vector actual = clique->gradientContribution().segment(variablePosition, dim);
 | |
|       EXPECT(assert_equal(expectedGradient[*jit], actual));
 | |
|       variablePosition += dim;
 | |
|     }
 | |
|     EXPECT_LONGS_EQUAL((long)clique->gradientContribution().rows(), (long)variablePosition);
 | |
|   }
 | |
| 
 | |
|   // Check gradient
 | |
|   VectorValues expectedGradient = GaussianFactorGraph(isam).gradientAtZero();
 | |
|   VectorValues expectedGradient2 = GaussianFactorGraph(isam).gradient(VectorValues::Zero(expectedGradient));
 | |
|   VectorValues actualGradient = isam.gradientAtZero();
 | |
|   EXPECT(assert_equal(expectedGradient2, expectedGradient));
 | |
|   EXPECT(assert_equal(expectedGradient, actualGradient));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, constrained_ordering)
 | |
| {
 | |
|   // These variables will be reused and accumulate factors and values
 | |
|   ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
 | |
|   Values fullinit;
 | |
|   NonlinearFactorGraph fullgraph;
 | |
| 
 | |
|   // We will constrain x3 and x4 to the end
 | |
|   FastMap<Key, int> constrained;
 | |
|   constrained.insert(make_pair((3), 1));
 | |
|   constrained.insert(make_pair((4), 2));
 | |
| 
 | |
|   // i keeps track of the time step
 | |
|   size_t i = 0;
 | |
| 
 | |
|   // Add a prior at time 0 and update isam
 | |
|   {
 | |
|     NonlinearFactorGraph newfactors;
 | |
|     newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
 | |
|     fullgraph.push_back(newfactors);
 | |
| 
 | |
|     Values init;
 | |
|     init.insert((0), Pose2(0.01, 0.01, 0.01));
 | |
|     fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
 | |
| 
 | |
|     isam.update(newfactors, init);
 | |
|   }
 | |
| 
 | |
|   CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | |
| 
 | |
|   // Add odometry from time 0 to time 5
 | |
|   for( ; i<5; ++i) {
 | |
|     NonlinearFactorGraph newfactors;
 | |
|     newfactors.emplace_shared<BetweenFactor<Pose2>>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | |
|     fullgraph.push_back(newfactors);
 | |
| 
 | |
|     Values init;
 | |
|     init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | |
|     fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | |
| 
 | |
|     if(i >= 3)
 | |
|       isam.update(newfactors, init, FactorIndices(), constrained);
 | |
|     else
 | |
|       isam.update(newfactors, init);
 | |
|   }
 | |
| 
 | |
|   // Add odometry from time 5 to 6 and landmark measurement at time 5
 | |
|   {
 | |
|     NonlinearFactorGraph newfactors;
 | |
|     newfactors.emplace_shared<BetweenFactor<Pose2>>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | |
|     newfactors.emplace_shared<BearingRangeFactor<Pose2, Point2>>(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
 | |
|     newfactors.emplace_shared<BearingRangeFactor<Pose2, Point2>>(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
 | |
|     fullgraph.push_back(newfactors);
 | |
| 
 | |
|     Values init;
 | |
|     init.insert((i+1), Pose2(1.01, 0.01, 0.01));
 | |
|     init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
 | |
|     init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
 | |
|     fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
 | |
|     fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
 | |
|     fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
 | |
| 
 | |
|     isam.update(newfactors, init, FactorIndices(), constrained);
 | |
|     ++ i;
 | |
|   }
 | |
| 
 | |
|   // Add odometry from time 6 to time 10
 | |
|   for( ; i<10; ++i) {
 | |
|     NonlinearFactorGraph newfactors;
 | |
|     newfactors.emplace_shared<BetweenFactor<Pose2>>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | |
|     fullgraph.push_back(newfactors);
 | |
| 
 | |
|     Values init;
 | |
|     init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | |
|     fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | |
| 
 | |
|     isam.update(newfactors, init, FactorIndices(), constrained);
 | |
|   }
 | |
| 
 | |
|   // Add odometry from time 10 to 11 and landmark measurement at time 10
 | |
|   {
 | |
|     NonlinearFactorGraph newfactors;
 | |
|     newfactors.emplace_shared<BetweenFactor<Pose2>>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | |
|     newfactors.emplace_shared<BearingRangeFactor<Pose2, Point2>>(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
 | |
|     newfactors.emplace_shared<BearingRangeFactor<Pose2, Point2>>(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
 | |
|     fullgraph.push_back(newfactors);
 | |
| 
 | |
|     Values init;
 | |
|     init.insert((i+1), Pose2(6.9, 0.1, 0.01));
 | |
|     fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
 | |
| 
 | |
|     isam.update(newfactors, init, FactorIndices(), constrained);
 | |
|     ++ i;
 | |
|   }
 | |
| 
 | |
|   // Compare solutions
 | |
|   EXPECT(isam_check(fullgraph, fullinit, isam, *this, result_));
 | |
| 
 | |
|   // Check gradient at each node
 | |
|   for (const auto& [key, clique]: isam.nodes()) {
 | |
|     // Compute expected gradient
 | |
|     GaussianFactorGraph jfg;
 | |
|     jfg.push_back(clique->conditional());
 | |
|     VectorValues expectedGradient = jfg.gradientAtZero();
 | |
|     // Compare with actual gradients
 | |
|     DenseIndex variablePosition = 0;
 | |
|     for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
 | |
|       const DenseIndex dim = clique->conditional()->getDim(jit);
 | |
|       Vector actual = clique->gradientContribution().segment(variablePosition, dim);
 | |
|       EXPECT(assert_equal(expectedGradient[*jit], actual));
 | |
|       variablePosition += dim;
 | |
|     }
 | |
|     LONGS_EQUAL((long)clique->gradientContribution().rows(), (long)variablePosition);
 | |
|   }
 | |
| 
 | |
|   // Check gradient
 | |
|   VectorValues expectedGradient = GaussianFactorGraph(isam).gradientAtZero();
 | |
|   VectorValues expectedGradient2 = GaussianFactorGraph(isam).gradient(VectorValues::Zero(expectedGradient));
 | |
|   VectorValues actualGradient = isam.gradientAtZero();
 | |
|   EXPECT(assert_equal(expectedGradient2, expectedGradient));
 | |
|   EXPECT(assert_equal(expectedGradient, actualGradient));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, slamlike_solution_partial_relinearization_check)
 | |
| {
 | |
|   // These variables will be reused and accumulate factors and values
 | |
|   Values fullinit;
 | |
|   NonlinearFactorGraph fullgraph;
 | |
|   ISAM2Params params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false);
 | |
|   params.enablePartialRelinearizationCheck = true;
 | |
|   ISAM2 isam = createSlamlikeISAM2(&fullinit, &fullgraph, params);
 | |
| 
 | |
|   // Compare solutions
 | |
|   CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   bool checkMarginalizeLeaves(ISAM2& isam, const FastList<Key>& leafKeys) {
 | |
|     Matrix expectedAugmentedHessian, expected3AugmentedHessian;
 | |
|     KeyVector toKeep;
 | |
|     for (const auto& [key, clique]: isam.getDelta()) {
 | |
|       if(find(leafKeys.begin(), leafKeys.end(), key) == leafKeys.end()) {
 | |
|         toKeep.push_back(key);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Calculate expected marginal from iSAM2 tree
 | |
|     expectedAugmentedHessian = GaussianFactorGraph(isam).marginal(toKeep, EliminateQR)->augmentedHessian();
 | |
| 
 | |
|     // Calculate expected marginal from cached linear factors
 | |
|     //assert(isam.params().cacheLinearizedFactors);
 | |
|     //Matrix expected2AugmentedHessian = isam.linearFactors_.marginal(toKeep, EliminateQR)->augmentedHessian();
 | |
| 
 | |
|     // Calculate expected marginal from original nonlinear factors
 | |
|     expected3AugmentedHessian = isam.getFactorsUnsafe().linearize(isam.getLinearizationPoint())
 | |
|       ->marginal(toKeep, EliminateQR)->augmentedHessian();
 | |
| 
 | |
|     // Do marginalization
 | |
|     isam.marginalizeLeaves(leafKeys);
 | |
| 
 | |
|     // Check
 | |
|     GaussianFactorGraph actualMarginalGraph(isam);
 | |
|     Matrix actualAugmentedHessian = actualMarginalGraph.augmentedHessian();
 | |
|     //Matrix actual2AugmentedHessian = linearFactors_.augmentedHessian();
 | |
|     Matrix actual3AugmentedHessian = isam.getFactorsUnsafe().linearize(
 | |
|       isam.getLinearizationPoint())->augmentedHessian();
 | |
|     assert(actualAugmentedHessian.allFinite());
 | |
| 
 | |
|     // Check full marginalization
 | |
|     //cout << "treeEqual" << endl;
 | |
|     bool treeEqual = assert_equal(expectedAugmentedHessian, actualAugmentedHessian, 1e-6);
 | |
|     //actualAugmentedHessian.bottomRightCorner(1,1) = expected2AugmentedHessian.bottomRightCorner(1,1); bool linEqual = assert_equal(expected2AugmentedHessian, actualAugmentedHessian, 1e-6);
 | |
|     //cout << "nonlinEqual" << endl;
 | |
|     actualAugmentedHessian.bottomRightCorner(1,1) = expected3AugmentedHessian.bottomRightCorner(1,1); bool nonlinEqual = assert_equal(expected3AugmentedHessian, actualAugmentedHessian, 1e-6);
 | |
|     //bool linCorrect = assert_equal(expected3AugmentedHessian, expected2AugmentedHessian, 1e-6);
 | |
|     //actual2AugmentedHessian.bottomRightCorner(1,1) = expected3AugmentedHessian.bottomRightCorner(1,1); bool afterLinCorrect = assert_equal(expected3AugmentedHessian, actual2AugmentedHessian, 1e-6);
 | |
|     //cout << "nonlinCorrect" << endl;
 | |
|     bool afterNonlinCorrect = assert_equal(expected3AugmentedHessian, actual3AugmentedHessian, 1e-6);
 | |
| 
 | |
|     bool ok = treeEqual && /*linEqual &&*/ nonlinEqual && /*linCorrect &&*/ /*afterLinCorrect &&*/ afterNonlinCorrect;
 | |
|     return ok;
 | |
|   }
 | |
| 
 | |
|   std::optional<FastMap<Key, int>> createOrderingConstraints(const ISAM2& isam, const KeyVector& newKeys, const KeySet& marginalizableKeys)
 | |
|   {
 | |
|     if (marginalizableKeys.empty()) {
 | |
|       return {};
 | |
|     } else {
 | |
|       FastMap<Key, int> constrainedKeys = FastMap<Key, int>();
 | |
|       // Generate ordering constraints so that the marginalizable variables will be eliminated first
 | |
|       // Set all existing and new variables to Group1
 | |
|       for (const auto& key_val : isam.getDelta()) {
 | |
|         constrainedKeys.emplace(key_val.first, 1);
 | |
|       }
 | |
|       for (const auto& key : newKeys) {
 | |
|         constrainedKeys.emplace(key, 1);
 | |
|       }
 | |
|       // And then re-assign the marginalizable variables to Group0 so that they'll all be leaf nodes
 | |
|       for (const auto& key : marginalizableKeys) {
 | |
|         constrainedKeys.at(key) = 0;
 | |
|       }
 | |
|       return constrainedKeys;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void markAffectedKeys(const Key& key, const ISAM2Clique::shared_ptr& rootClique, KeyList& additionalKeys)
 | |
|   {
 | |
|     std::stack<ISAM2Clique::shared_ptr> frontier;
 | |
|     frontier.push(rootClique);
 | |
|     // Basic DFS to find additional keys
 | |
|     while (!frontier.empty()) {
 | |
|       // Get the top of the stack
 | |
|       const ISAM2Clique::shared_ptr clique = frontier.top();
 | |
|       frontier.pop();
 | |
|       // Check if we have more keys and children to add
 | |
|       if (std::find(clique->conditional()->beginParents(), clique->conditional()->endParents(), key) !=
 | |
|           clique->conditional()->endParents()) {
 | |
|         for (Key i : clique->conditional()->frontals()) {
 | |
|           additionalKeys.push_back(i);
 | |
|         }
 | |
|         for (const ISAM2Clique::shared_ptr& child : clique->children) {
 | |
|           frontier.push(child);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool updateAndMarginalize(const NonlinearFactorGraph& newFactors, const Values& newValues, const KeySet& marginalizableKeys, ISAM2& isam)
 | |
|   {
 | |
|     // Force ISAM2 to put marginalizable variables at the beginning
 | |
|     auto orderingConstraints = createOrderingConstraints(isam, newValues.keys(), marginalizableKeys);
 | |
| 
 | |
|     // Mark additional keys between the marginalized keys and the leaves
 | |
|     KeyList markedKeys;
 | |
|     for (Key key : marginalizableKeys) {
 | |
|       markedKeys.push_back(key);
 | |
|       ISAM2Clique::shared_ptr clique = isam[key];
 | |
|       for (const ISAM2Clique::shared_ptr& child : clique->children) {
 | |
|         markAffectedKeys(key, child, markedKeys);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Update
 | |
|     isam.update(newFactors, newValues, FactorIndices{}, orderingConstraints, {}, markedKeys);
 | |
| 
 | |
|     if (!marginalizableKeys.empty()) {
 | |
|       FastList<Key> leafKeys(marginalizableKeys.begin(), marginalizableKeys.end());
 | |
|       return checkMarginalizeLeaves(isam, leafKeys);
 | |
|     }
 | |
|     else {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, marginalizeLeaves1) {
 | |
|   ISAM2 isam;
 | |
|   NonlinearFactorGraph factors;
 | |
|   factors.addPrior(0, 0.0, model);
 | |
| 
 | |
|   factors.emplace_shared<BetweenFactor<double>>(0, 1, 0.0, model);
 | |
|   factors.emplace_shared<BetweenFactor<double>>(1, 2, 0.0, model);
 | |
|   factors.emplace_shared<BetweenFactor<double>>(0, 2, 0.0, model);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(0, 0.0);
 | |
|   values.insert(1, 0.0);
 | |
|   values.insert(2, 0.0);
 | |
| 
 | |
|   FastMap<Key, int> constrainedKeys;
 | |
|   constrainedKeys.insert(make_pair(0, 0));
 | |
|   constrainedKeys.insert(make_pair(1, 1));
 | |
|   constrainedKeys.insert(make_pair(2, 2));
 | |
| 
 | |
|   isam.update(factors, values, FactorIndices(), constrainedKeys);
 | |
| 
 | |
|   FastList<Key> leafKeys {0};
 | |
|   EXPECT(checkMarginalizeLeaves(isam, leafKeys));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, marginalizeLeaves2) {
 | |
|   ISAM2 isam;
 | |
| 
 | |
|   NonlinearFactorGraph factors;
 | |
|   factors.addPrior(0, 0.0, model);
 | |
| 
 | |
|   factors.emplace_shared<BetweenFactor<double>>(0, 1, 0.0, model);
 | |
|   factors.emplace_shared<BetweenFactor<double>>(1, 2, 0.0, model);
 | |
|   factors.emplace_shared<BetweenFactor<double>>(0, 2, 0.0, model);
 | |
|   factors.emplace_shared<BetweenFactor<double>>(2, 3, 0.0, model);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(0, 0.0);
 | |
|   values.insert(1, 0.0);
 | |
|   values.insert(2, 0.0);
 | |
|   values.insert(3, 0.0);
 | |
| 
 | |
|   FastMap<Key, int> constrainedKeys;
 | |
|   constrainedKeys.insert(make_pair(0, 0));
 | |
|   constrainedKeys.insert(make_pair(1, 1));
 | |
|   constrainedKeys.insert(make_pair(2, 2));
 | |
|   constrainedKeys.insert(make_pair(3, 3));
 | |
| 
 | |
|   isam.update(factors, values, FactorIndices(), constrainedKeys);
 | |
| 
 | |
|   FastList<Key> leafKeys {0};
 | |
|   EXPECT(checkMarginalizeLeaves(isam, leafKeys));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, marginalizeLeaves3) {
 | |
|   ISAM2 isam;
 | |
| 
 | |
|   NonlinearFactorGraph factors;
 | |
|   factors.addPrior(0, 0.0, model);
 | |
| 
 | |
|   factors.emplace_shared<BetweenFactor<double>>(0, 1, 0.0, model);
 | |
|   factors.emplace_shared<BetweenFactor<double>>(1, 2, 0.0, model);
 | |
|   factors.emplace_shared<BetweenFactor<double>>(0, 2, 0.0, model);
 | |
| 
 | |
|   factors.emplace_shared<BetweenFactor<double>>(2, 3, 0.0, model);
 | |
| 
 | |
|   factors.emplace_shared<BetweenFactor<double>>(3, 4, 0.0, model);
 | |
|   factors.emplace_shared<BetweenFactor<double>>(4, 5, 0.0, model);
 | |
|   factors.emplace_shared<BetweenFactor<double>>(3, 5, 0.0, model);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(0, 0.0);
 | |
|   values.insert(1, 0.0);
 | |
|   values.insert(2, 0.0);
 | |
|   values.insert(3, 0.0);
 | |
|   values.insert(4, 0.0);
 | |
|   values.insert(5, 0.0);
 | |
| 
 | |
|   FastMap<Key, int> constrainedKeys;
 | |
|   constrainedKeys.insert(make_pair(0, 0));
 | |
|   constrainedKeys.insert(make_pair(1, 1));
 | |
|   constrainedKeys.insert(make_pair(2, 2));
 | |
|   constrainedKeys.insert(make_pair(3, 3));
 | |
|   constrainedKeys.insert(make_pair(4, 4));
 | |
|   constrainedKeys.insert(make_pair(5, 5));
 | |
| 
 | |
|   isam.update(factors, values, FactorIndices(), constrainedKeys);
 | |
| 
 | |
|   FastList<Key> leafKeys {0};
 | |
|   EXPECT(checkMarginalizeLeaves(isam, leafKeys));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, marginalizeLeaves4) {
 | |
|   ISAM2 isam;
 | |
| 
 | |
|   NonlinearFactorGraph factors;
 | |
|   factors.addPrior(0, 0.0, model);
 | |
|   factors.emplace_shared<BetweenFactor<double>>(0, 2, 0.0, model);
 | |
|   factors.emplace_shared<BetweenFactor<double>>(1, 2, 0.0, model);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(0, 0.0);
 | |
|   values.insert(1, 0.0);
 | |
|   values.insert(2, 0.0);
 | |
| 
 | |
|   FastMap<Key, int> constrainedKeys;
 | |
|   constrainedKeys.insert(make_pair(0, 0));
 | |
|   constrainedKeys.insert(make_pair(1, 1));
 | |
|   constrainedKeys.insert(make_pair(2, 2));
 | |
| 
 | |
|   isam.update(factors, values, FactorIndices(), constrainedKeys);
 | |
| 
 | |
|   FastList<Key> leafKeys {1};
 | |
|   EXPECT(checkMarginalizeLeaves(isam, leafKeys));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, marginalizeLeaves5)
 | |
| {
 | |
|   // Create isam2
 | |
|   ISAM2 isam = createSlamlikeISAM2();
 | |
| 
 | |
|   // Marginalize
 | |
|   FastList<Key> marginalizeKeys {0};
 | |
|   EXPECT(checkMarginalizeLeaves(isam, marginalizeKeys));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, marginalizeLeaves6)
 | |
| {
 | |
|   auto nm = noiseModel::Isotropic::Sigma(6, 1.0);
 | |
| 
 | |
|   int gridDim = 10;
 | |
| 
 | |
|   auto idxToKey = [gridDim](int i, int j){return i * gridDim + j;};
 | |
| 
 | |
|   NonlinearFactorGraph factors;
 | |
|   Values values;
 | |
|   ISAM2 isam;
 | |
| 
 | |
|   // Create a grid of pose variables
 | |
|   for (int i = 0; i < gridDim; ++i) {
 | |
|     for (int j = 0; j < gridDim; ++j) {
 | |
|       Pose3 pose = Pose3(Rot3::Identity(), Point3(i, j, 0));
 | |
|       Key key = idxToKey(i, j);
 | |
|       // Place a prior on the first pose
 | |
|       factors.addPrior(key, Pose3(Rot3::Identity(), Point3(i, j, 0)), nm);
 | |
|       values.insert(key, pose);
 | |
|       if (i > 0) {
 | |
|         factors.emplace_shared<BetweenFactor<Pose3>>(idxToKey(i - 1, j), key, Pose3(Rot3::Identity(), Point3(1, 0, 0)),nm);
 | |
|       }
 | |
|       if (j > 0) {
 | |
|         factors.emplace_shared<BetweenFactor<Pose3>>(idxToKey(i, j - 1), key, Pose3(Rot3::Identity(), Point3(0, 1, 0)),nm);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Optimize the graph
 | |
|   EXPECT(updateAndMarginalize(factors, values, {}, isam));
 | |
|   auto estimate = isam.calculateBestEstimate();
 | |
| 
 | |
|   // Get the list of keys
 | |
|   std::vector<Key> key_list(gridDim * gridDim);
 | |
|   std::iota(key_list.begin(), key_list.end(), 0);
 | |
| 
 | |
|   // Shuffle the keys -> we will marginalize the keys one by one in this order
 | |
|   std::shuffle(key_list.begin(), key_list.end(), std::default_random_engine(1234));
 | |
| 
 | |
|   for (const auto& key : key_list) {
 | |
|     KeySet marginalKeys;
 | |
|     marginalKeys.insert(key);
 | |
|     EXPECT(updateAndMarginalize({}, {}, marginalKeys, isam));
 | |
|     estimate = isam.calculateBestEstimate();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, MarginalizeRoot)
 | |
| {
 | |
|   auto nm = noiseModel::Isotropic::Sigma(6, 1.0);
 | |
| 
 | |
|   NonlinearFactorGraph factors;
 | |
|   Values values;
 | |
|   ISAM2 isam;
 | |
| 
 | |
|   // Create a factor graph with one variable and a prior
 | |
|   Pose3 root = Pose3::Identity();
 | |
|   Key rootKey(0);
 | |
|   values.insert(rootKey, root);
 | |
|   factors.addPrior(rootKey, Pose3::Identity(), nm);
 | |
| 
 | |
|   // Optimize the graph
 | |
|   EXPECT(updateAndMarginalize(factors, values, {}, isam));
 | |
|   auto estimate = isam.calculateBestEstimate();
 | |
|   EXPECT(estimate.size() == 1);
 | |
| 
 | |
|   // And remove the node from the graph
 | |
|   KeySet marginalizableKeys;
 | |
|   marginalizableKeys.insert(rootKey);
 | |
| 
 | |
|   EXPECT(updateAndMarginalize({}, {}, marginalizableKeys, isam));
 | |
| 
 | |
|   estimate = isam.calculateBestEstimate();
 | |
|   EXPECT(estimate.empty());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, marginalizationSize)
 | |
| {
 | |
|   auto nm = noiseModel::Isotropic::Sigma(6, 1.0);
 | |
| 
 | |
|   NonlinearFactorGraph factors;
 | |
|   Values values;
 | |
|   ISAM2Params params;
 | |
|   params.findUnusedFactorSlots = true;
 | |
|   ISAM2 isam{params};
 | |
| 
 | |
|   // Create a pose variable
 | |
|   Key aKey(0);
 | |
|   values.insert(aKey, Pose3::Identity());
 | |
|   factors.addPrior(aKey, Pose3::Identity(), nm);
 | |
|   // Create another pose variable linked to the first
 | |
|   Pose3 b = Pose3::Identity();
 | |
|   Key bKey(1);
 | |
|   values.insert(bKey, Pose3::Identity());
 | |
|   factors.emplace_shared<BetweenFactor<Pose3>>(aKey, bKey, Pose3::Identity(), nm);
 | |
|   // Optimize the graph
 | |
|   EXPECT(updateAndMarginalize(factors, values, {}, isam));
 | |
| 
 | |
|   // Now remove a variable -> we should not see the number of factors increase
 | |
|   gtsam::KeySet to_remove;
 | |
|   to_remove.insert(aKey);
 | |
|   const auto numFactorsBefore = isam.getFactorsUnsafe().size();
 | |
|   updateAndMarginalize({}, {}, to_remove, isam);
 | |
|   EXPECT(numFactorsBefore == isam.getFactorsUnsafe().size());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, marginalCovariance)
 | |
| {
 | |
|   // Create isam2
 | |
|   ISAM2 isam = createSlamlikeISAM2();
 | |
| 
 | |
|   // Check marginal
 | |
|   Matrix expected = Marginals(isam.getFactorsUnsafe(), isam.getLinearizationPoint()).marginalCovariance(5);
 | |
|   Matrix actual = isam.marginalCovariance(5);
 | |
|   EXPECT(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(ISAM2, calculate_nnz)
 | |
| {
 | |
|   ISAM2 isam = createSlamlikeISAM2();
 | |
|   int expected = 241;
 | |
|   int actual = isam.roots().front()->calculate_nnz();
 | |
| 
 | |
|   EXPECT_LONGS_EQUAL(expected, actual);
 | |
| }
 | |
| 
 | |
| class FixActiveFactor : public NoiseModelFactorN<Vector2> {
 | |
|   using Base = NoiseModelFactorN<Vector2>;
 | |
|   bool is_active_;
 | |
| 
 | |
| public:
 | |
|   FixActiveFactor(const gtsam::Key& key, const bool active)
 | |
|       : Base(nullptr, key), is_active_(active) {}
 | |
| 
 | |
|   virtual bool active(const gtsam::Values &values) const override {
 | |
|     return is_active_;
 | |
|   }
 | |
| 
 | |
|   virtual Vector
 | |
|   evaluateError(const Vector2& x,
 | |
|                 Base::OptionalMatrixTypeT<Vector2> H = nullptr) const override {
 | |
|     if (H) {
 | |
|       *H = Vector2::Identity();
 | |
|     }
 | |
|     return Vector2::Zero();
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST(ActiveFactorTesting, Issue1596) {
 | |
|   // Issue1596: When a derived Nonlinear Factor is not active, the linearization returns a nullptr (NonlinearFactor.cpp:156), which  
 | |
|   //            causes an error when `EliminateSymbolic` is called (SymbolicFactor-inst.h:45) due to not checking if the factor is nullptr.
 | |
|   const gtsam::Key key{Symbol('x', 0)};
 | |
| 
 | |
|   ISAM2 isam;
 | |
|   Values values;
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   // Insert an active factor
 | |
|   values.insert<Vector2>(key, Vector2::Zero());
 | |
|   graph.emplace_shared<FixActiveFactor>(key, true);
 | |
| 
 | |
|   // No problem here
 | |
|   isam.update(graph, values);
 | |
| 
 | |
|   graph = NonlinearFactorGraph();
 | |
|   
 | |
|   // Inserting a factor that is never active
 | |
|   graph.emplace_shared<FixActiveFactor>(key, false);
 | |
| 
 | |
|   // This call throws the error if the pointer is not validated on (SymbolicFactor-inst.h:45)
 | |
|   isam.update(graph);
 | |
| 
 | |
|   // If the bug is fixed, this line is reached.
 | |
|   EXPECT(isam.getFactorsUnsafe().size() == 2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | |
| /* ************************************************************************* */
 |