gtsam/gtsam/nonlinear/ISAM2Params.h

366 lines
15 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ISAM2Params.h
* @brief Parameters for iSAM 2.
* @author Michael Kaess, Richard Roberts, Frank Dellaert
*/
// \callgraph
#pragma once
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
#include <boost/variant.hpp>
#include <string>
namespace gtsam {
/**
* @addtogroup ISAM2
* Parameters for ISAM2 using Gauss-Newton optimization. Either this class or
* ISAM2DoglegParams should be specified as the optimizationParams in
* ISAM2Params, which should in turn be passed to ISAM2(const ISAM2Params&).
*/
struct GTSAM_EXPORT ISAM2GaussNewtonParams {
double
wildfireThreshold; ///< Continue updating the linear delta only when
///< changes are above this threshold (default: 0.001)
/** Specify parameters as constructor arguments */
ISAM2GaussNewtonParams(
double _wildfireThreshold =
0.001 ///< see ISAM2GaussNewtonParams public variables,
///< ISAM2GaussNewtonParams::wildfireThreshold
)
: wildfireThreshold(_wildfireThreshold) {}
void print(const std::string str = "") const {
using std::cout;
cout << str << "type: ISAM2GaussNewtonParams\n";
cout << str << "wildfireThreshold: " << wildfireThreshold << "\n";
cout.flush();
}
double getWildfireThreshold() const { return wildfireThreshold; }
void setWildfireThreshold(double wildfireThreshold) {
this->wildfireThreshold = wildfireThreshold;
}
};
/**
* @addtogroup ISAM2
* Parameters for ISAM2 using Dogleg optimization. Either this class or
* ISAM2GaussNewtonParams should be specified as the optimizationParams in
* ISAM2Params, which should in turn be passed to ISAM2(const ISAM2Params&).
*/
struct GTSAM_EXPORT ISAM2DoglegParams {
double initialDelta; ///< The initial trust region radius for Dogleg
double
wildfireThreshold; ///< Continue updating the linear delta only when
///< changes are above this threshold (default: 1e-5)
DoglegOptimizerImpl::TrustRegionAdaptationMode
adaptationMode; ///< See description in
///< DoglegOptimizerImpl::TrustRegionAdaptationMode
bool
verbose; ///< Whether Dogleg prints iteration and convergence information
/** Specify parameters as constructor arguments */
ISAM2DoglegParams(
double _initialDelta = 1.0, ///< see ISAM2DoglegParams::initialDelta
double _wildfireThreshold =
1e-5, ///< see ISAM2DoglegParams::wildfireThreshold
DoglegOptimizerImpl::TrustRegionAdaptationMode _adaptationMode =
DoglegOptimizerImpl::
SEARCH_EACH_ITERATION, ///< see ISAM2DoglegParams::adaptationMode
bool _verbose = false ///< see ISAM2DoglegParams::verbose
)
: initialDelta(_initialDelta),
wildfireThreshold(_wildfireThreshold),
adaptationMode(_adaptationMode),
verbose(_verbose) {}
void print(const std::string str = "") const {
using std::cout;
cout << str << "type: ISAM2DoglegParams\n";
cout << str << "initialDelta: " << initialDelta << "\n";
cout << str << "wildfireThreshold: " << wildfireThreshold << "\n";
cout << str
<< "adaptationMode: " << adaptationModeTranslator(adaptationMode)
<< "\n";
cout.flush();
}
double getInitialDelta() const { return initialDelta; }
double getWildfireThreshold() const { return wildfireThreshold; }
std::string getAdaptationMode() const {
return adaptationModeTranslator(adaptationMode);
}
bool isVerbose() const { return verbose; }
void setInitialDelta(double initialDelta) {
this->initialDelta = initialDelta;
}
void setWildfireThreshold(double wildfireThreshold) {
this->wildfireThreshold = wildfireThreshold;
}
void setAdaptationMode(const std::string& adaptationMode) {
this->adaptationMode = adaptationModeTranslator(adaptationMode);
}
void setVerbose(bool verbose) { this->verbose = verbose; }
std::string adaptationModeTranslator(
const DoglegOptimizerImpl::TrustRegionAdaptationMode& adaptationMode)
const;
DoglegOptimizerImpl::TrustRegionAdaptationMode adaptationModeTranslator(
const std::string& adaptationMode) const;
};
/**
* @addtogroup ISAM2
* Parameters for the ISAM2 algorithm. Default parameter values are listed
* below.
*/
typedef FastMap<char, Vector> ISAM2ThresholdMap;
typedef ISAM2ThresholdMap::value_type ISAM2ThresholdMapValue;
struct GTSAM_EXPORT ISAM2Params {
typedef boost::variant<ISAM2GaussNewtonParams, ISAM2DoglegParams>
OptimizationParams; ///< Either ISAM2GaussNewtonParams or
///< ISAM2DoglegParams
typedef boost::variant<double, FastMap<char, Vector> >
RelinearizationThreshold; ///< Either a constant relinearization
///< threshold or a per-variable-type set of
///< thresholds
/** Optimization parameters, this both selects the nonlinear optimization
* method and specifies its parameters, either ISAM2GaussNewtonParams or
* ISAM2DoglegParams. In the former, Gauss-Newton optimization will be used
* with the specified parameters, and in the latter Powell's dog-leg
* algorithm will be used with the specified parameters.
*/
OptimizationParams optimizationParams;
/** Only relinearize variables whose linear delta magnitude is greater than
* this threshold (default: 0.1). If this is a FastMap<char,Vector> instead
* of a double, then the threshold is specified for each dimension of each
* variable type. This parameter then maps from a character indicating the
* variable type to a Vector of thresholds for each dimension of that
* variable. For example, if Pose keys are of type TypedSymbol<'x',Pose3>,
* and landmark keys are of type TypedSymbol<'l',Point3>, then appropriate
* entries would be added with:
* \code
FastMap<char,Vector> thresholds;
thresholds['x'] = (Vector(6) << 0.1, 0.1, 0.1, 0.5, 0.5, 0.5).finished();
// 0.1 rad rotation threshold, 0.5 m translation threshold thresholds['l'] =
Vector3(1.0, 1.0, 1.0); // 1.0 m landmark position threshold
params.relinearizeThreshold = thresholds;
\endcode
*/
RelinearizationThreshold relinearizeThreshold;
int relinearizeSkip; ///< Only relinearize any variables every
///< relinearizeSkip calls to ISAM2::update (default:
///< 10)
bool enableRelinearization; ///< Controls whether ISAM2 will ever relinearize
///< any variables (default: true)
bool evaluateNonlinearError; ///< Whether to evaluate the nonlinear error
///< before and after the update, to return in
///< ISAM2Result from update()
enum Factorization { CHOLESKY, QR };
/** Specifies whether to use QR or CHOESKY numerical factorization (default:
* CHOLESKY). Cholesky is faster but potentially numerically unstable for
* poorly-conditioned problems, which can occur when uncertainty is very low
* in some variables (or dimensions of variables) and very high in others. QR
* is slower but more numerically stable in poorly-conditioned problems. We
* suggest using the default of Cholesky unless gtsam sometimes throws
* IndefiniteLinearSystemException when your problem's Hessian is actually
* positive definite. For positive definite problems, numerical error
* accumulation can cause the problem to become numerically negative or
* indefinite as solving proceeds, especially when using Cholesky.
*/
Factorization factorization;
/** Whether to cache linear factors (default: true).
* This can improve performance if linearization is expensive, but can hurt
* performance if linearization is very cleap due to computation to look up
* additional keys.
*/
bool cacheLinearizedFactors;
KeyFormatter
keyFormatter; ///< A KeyFormatter for when keys are printed during
///< debugging (default: DefaultKeyFormatter)
bool enableDetailedResults; ///< Whether to compute and return
///< ISAM2Result::detailedResults, this can
///< increase running time (default: false)
/** Check variables for relinearization in tree-order, stopping the check once
* a variable does not need to be relinearized (default: false). This can
* improve speed by only checking a small part of the top of the tree.
* However, variables below the check cut-off can accumulate significant
* deltas without triggering relinearization. This is particularly useful in
* exploration scenarios where real-time performance is desired over
* correctness. Use with caution.
*/
bool enablePartialRelinearizationCheck;
/// When you will be removing many factors, e.g. when using ISAM2 as a
/// fixed-lag smoother, enable this option to add factors in the first
/// available factor slots, to avoid accumulating nullptr factor slots, at the
/// cost of having to search for slots every time a factor is added.
bool findUnusedFactorSlots;
/**
* Specify parameters as constructor arguments
* See the documentation of member variables above.
*/
ISAM2Params(OptimizationParams _optimizationParams = ISAM2GaussNewtonParams(),
RelinearizationThreshold _relinearizeThreshold = 0.1,
int _relinearizeSkip = 10, bool _enableRelinearization = true,
bool _evaluateNonlinearError = false,
Factorization _factorization = ISAM2Params::CHOLESKY,
bool _cacheLinearizedFactors = true,
const KeyFormatter& _keyFormatter =
DefaultKeyFormatter, ///< see ISAM2::Params::keyFormatter,
bool _enableDetailedResults = false)
: optimizationParams(_optimizationParams),
relinearizeThreshold(_relinearizeThreshold),
relinearizeSkip(_relinearizeSkip),
enableRelinearization(_enableRelinearization),
evaluateNonlinearError(_evaluateNonlinearError),
factorization(_factorization),
cacheLinearizedFactors(_cacheLinearizedFactors),
keyFormatter(_keyFormatter),
enableDetailedResults(_enableDetailedResults),
enablePartialRelinearizationCheck(false),
findUnusedFactorSlots(false) {}
/// print iSAM2 parameters
void print(const std::string& str = "") const {
using std::cout;
cout << str << "\n";
static const std::string kStr("optimizationParams: ");
if (optimizationParams.type() == typeid(ISAM2GaussNewtonParams))
boost::get<ISAM2GaussNewtonParams>(optimizationParams).print();
else if (optimizationParams.type() == typeid(ISAM2DoglegParams))
boost::get<ISAM2DoglegParams>(optimizationParams).print(kStr);
else
cout << kStr << "{unknown type}\n";
cout << "relinearizeThreshold: ";
if (relinearizeThreshold.type() == typeid(double)) {
cout << boost::get<double>(relinearizeThreshold) << "\n";
} else {
cout << "{mapped}\n";
for (const ISAM2ThresholdMapValue& value :
boost::get<ISAM2ThresholdMap>(relinearizeThreshold)) {
cout << " '" << value.first
<< "' -> [" << value.second.transpose() << " ]\n";
}
}
cout << "relinearizeSkip: " << relinearizeSkip << "\n";
cout << "enableRelinearization: " << enableRelinearization
<< "\n";
cout << "evaluateNonlinearError: " << evaluateNonlinearError
<< "\n";
cout << "factorization: "
<< factorizationTranslator(factorization) << "\n";
cout << "cacheLinearizedFactors: " << cacheLinearizedFactors
<< "\n";
cout << "enableDetailedResults: " << enableDetailedResults
<< "\n";
cout << "enablePartialRelinearizationCheck: "
<< enablePartialRelinearizationCheck << "\n";
cout << "findUnusedFactorSlots: " << findUnusedFactorSlots
<< "\n";
cout.flush();
}
/// @name Getters and Setters for all properties
/// @{
OptimizationParams getOptimizationParams() const {
return this->optimizationParams;
}
RelinearizationThreshold getRelinearizeThreshold() const {
return relinearizeThreshold;
}
int getRelinearizeSkip() const { return relinearizeSkip; }
bool isEnableRelinearization() const { return enableRelinearization; }
bool isEvaluateNonlinearError() const { return evaluateNonlinearError; }
std::string getFactorization() const {
return factorizationTranslator(factorization);
}
bool isCacheLinearizedFactors() const { return cacheLinearizedFactors; }
KeyFormatter getKeyFormatter() const { return keyFormatter; }
bool isEnableDetailedResults() const { return enableDetailedResults; }
bool isEnablePartialRelinearizationCheck() const {
return enablePartialRelinearizationCheck;
}
void setOptimizationParams(OptimizationParams optimizationParams) {
this->optimizationParams = optimizationParams;
}
void setRelinearizeThreshold(RelinearizationThreshold relinearizeThreshold) {
this->relinearizeThreshold = relinearizeThreshold;
}
void setRelinearizeSkip(int relinearizeSkip) {
this->relinearizeSkip = relinearizeSkip;
}
void setEnableRelinearization(bool enableRelinearization) {
this->enableRelinearization = enableRelinearization;
}
void setEvaluateNonlinearError(bool evaluateNonlinearError) {
this->evaluateNonlinearError = evaluateNonlinearError;
}
void setFactorization(const std::string& factorization) {
this->factorization = factorizationTranslator(factorization);
}
void setCacheLinearizedFactors(bool cacheLinearizedFactors) {
this->cacheLinearizedFactors = cacheLinearizedFactors;
}
void setKeyFormatter(KeyFormatter keyFormatter) {
this->keyFormatter = keyFormatter;
}
void setEnableDetailedResults(bool enableDetailedResults) {
this->enableDetailedResults = enableDetailedResults;
}
void setEnablePartialRelinearizationCheck(
bool enablePartialRelinearizationCheck) {
this->enablePartialRelinearizationCheck = enablePartialRelinearizationCheck;
}
GaussianFactorGraph::Eliminate getEliminationFunction() const {
return factorization == CHOLESKY
? (GaussianFactorGraph::Eliminate)EliminatePreferCholesky
: (GaussianFactorGraph::Eliminate)EliminateQR;
}
/// @}
/// @name Some utilities
/// @{
static Factorization factorizationTranslator(const std::string& str);
static std::string factorizationTranslator(const Factorization& value);
/// @}
};
} // namespace gtsam