151 lines
3.5 KiB
C++
151 lines
3.5 KiB
C++
// Copyright (C) 2018-2019 Yixuan Qiu <yixuan.qiu@cos.name>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at https://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef ARNOLDI_OP_H
|
|
#define ARNOLDI_OP_H
|
|
|
|
#include <Eigen/Core>
|
|
#include <cmath> // std::sqrt
|
|
|
|
namespace Spectra {
|
|
|
|
///
|
|
/// \ingroup Internals
|
|
/// @{
|
|
///
|
|
|
|
///
|
|
/// \defgroup Operators Operators
|
|
///
|
|
/// Different types of operators.
|
|
///
|
|
|
|
///
|
|
/// \ingroup Operators
|
|
///
|
|
/// Operators used in the Arnoldi factorization.
|
|
///
|
|
template <typename Scalar, typename OpType, typename BOpType>
|
|
class ArnoldiOp
|
|
{
|
|
private:
|
|
typedef Eigen::Index Index;
|
|
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector;
|
|
|
|
OpType& m_op;
|
|
BOpType& m_Bop;
|
|
Vector m_cache;
|
|
|
|
public:
|
|
ArnoldiOp(OpType* op, BOpType* Bop) :
|
|
m_op(*op), m_Bop(*Bop), m_cache(op->rows())
|
|
{}
|
|
|
|
inline Index rows() const { return m_op.rows(); }
|
|
|
|
// In generalized eigenvalue problem Ax=lambda*Bx, define the inner product to be <x, y> = x'By.
|
|
// For regular eigenvalue problems, it is the usual inner product <x, y> = x'y
|
|
|
|
// Compute <x, y> = x'By
|
|
// x and y are two vectors
|
|
template <typename Arg1, typename Arg2>
|
|
Scalar inner_product(const Arg1& x, const Arg2& y)
|
|
{
|
|
m_Bop.mat_prod(y.data(), m_cache.data());
|
|
return x.dot(m_cache);
|
|
}
|
|
|
|
// Compute res = <X, y> = X'By
|
|
// X is a matrix, y is a vector, res is a vector
|
|
template <typename Arg1, typename Arg2>
|
|
void trans_product(const Arg1& x, const Arg2& y, Eigen::Ref<Vector> res)
|
|
{
|
|
m_Bop.mat_prod(y.data(), m_cache.data());
|
|
res.noalias() = x.transpose() * m_cache;
|
|
}
|
|
|
|
// B-norm of a vector, ||x||_B = sqrt(x'Bx)
|
|
template <typename Arg>
|
|
Scalar norm(const Arg& x)
|
|
{
|
|
using std::sqrt;
|
|
return sqrt(inner_product<Arg, Arg>(x, x));
|
|
}
|
|
|
|
// The "A" operator to generate the Krylov subspace
|
|
inline void perform_op(const Scalar* x_in, Scalar* y_out)
|
|
{
|
|
m_op.perform_op(x_in, y_out);
|
|
}
|
|
};
|
|
|
|
///
|
|
/// \ingroup Operators
|
|
///
|
|
/// Placeholder for the B-operator when \f$B = I\f$.
|
|
///
|
|
class IdentityBOp
|
|
{};
|
|
|
|
///
|
|
/// \ingroup Operators
|
|
///
|
|
/// Partial specialization for the case \f$B = I\f$.
|
|
///
|
|
template <typename Scalar, typename OpType>
|
|
class ArnoldiOp<Scalar, OpType, IdentityBOp>
|
|
{
|
|
private:
|
|
typedef Eigen::Index Index;
|
|
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> Vector;
|
|
|
|
OpType& m_op;
|
|
|
|
public:
|
|
ArnoldiOp<Scalar, OpType, IdentityBOp>(OpType* op, IdentityBOp* /*Bop*/) :
|
|
m_op(*op)
|
|
{}
|
|
|
|
inline Index rows() const { return m_op.rows(); }
|
|
|
|
// Compute <x, y> = x'y
|
|
// x and y are two vectors
|
|
template <typename Arg1, typename Arg2>
|
|
Scalar inner_product(const Arg1& x, const Arg2& y) const
|
|
{
|
|
return x.dot(y);
|
|
}
|
|
|
|
// Compute res = <X, y> = X'y
|
|
// X is a matrix, y is a vector, res is a vector
|
|
template <typename Arg1, typename Arg2>
|
|
void trans_product(const Arg1& x, const Arg2& y, Eigen::Ref<Vector> res) const
|
|
{
|
|
res.noalias() = x.transpose() * y;
|
|
}
|
|
|
|
// B-norm of a vector. For regular eigenvalue problems it is simply the L2 norm
|
|
template <typename Arg>
|
|
Scalar norm(const Arg& x)
|
|
{
|
|
return x.norm();
|
|
}
|
|
|
|
// The "A" operator to generate the Krylov subspace
|
|
inline void perform_op(const Scalar* x_in, Scalar* y_out)
|
|
{
|
|
m_op.perform_op(x_in, y_out);
|
|
}
|
|
};
|
|
|
|
///
|
|
/// @}
|
|
///
|
|
|
|
} // namespace Spectra
|
|
|
|
#endif // ARNOLDI_OP_H
|