gtsam/gtsam/linear/RegularJacobianFactor.h

191 lines
5.7 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file RegularJacobianFactor.h
* @brief JacobianFactor class with fixed sized blcoks
* @author Sungtae An
* @date Nov 11, 2014
*/
#pragma once
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/VectorValues.h>
#include <boost/foreach.hpp>
namespace gtsam {
/**
* JacobianFactor with constant sized blocks
* Provides raw memory access versions of linear operator.
* Is base class for JacobianQFactor, JacobianFactorQR, and JacobianFactorSVD
*/
template<size_t D>
class RegularJacobianFactor: public JacobianFactor {
private:
// Use eigen magic to access raw memory
typedef Eigen::Matrix<double, D, 1> DVector;
typedef Eigen::Map<DVector> DMap;
typedef Eigen::Map<const DVector> ConstDMap;
public:
/// Default constructor
RegularJacobianFactor() {}
/** Construct an n-ary factor
* @tparam TERMS A container whose value type is std::pair<Key, Matrix>, specifying the
* collection of keys and matrices making up the factor.
* TODO Verify terms are regular
*/
template<typename TERMS>
RegularJacobianFactor(const TERMS& terms, const Vector& b,
const SharedDiagonal& model = SharedDiagonal()) :
JacobianFactor(terms, b, model) {
}
/** Constructor with arbitrary number keys, and where the augmented matrix is given all together
* instead of in block terms. Note that only the active view of the provided augmented matrix
* is used, and that the matrix data is copied into a newly-allocated matrix in the constructed
* factor.
* TODO Verify complies to regular
*/
template<typename KEYS>
RegularJacobianFactor(const KEYS& keys,
const VerticalBlockMatrix& augmentedMatrix, const SharedDiagonal& sigmas =
SharedDiagonal()) :
JacobianFactor(keys, augmentedMatrix, sigmas) {
}
using JacobianFactor::multiplyHessianAdd;
/** y += alpha * A'*A*x */
virtual void multiplyHessianAdd(double alpha, const VectorValues& x,
VectorValues& y) const {
JacobianFactor::multiplyHessianAdd(alpha, x, y);
}
/**
* @brief double* Hessian-vector multiply, i.e. y += A'*(A*x)
* RAW memory access! Assumes keys start at 0 and go to M-1, and x and and y are laid out that way
*/
void multiplyHessianAdd(double alpha, const double* x, double* y) const {
if (empty())
return;
Vector Ax = Vector::Zero(Ab_.rows());
// Just iterate over all A matrices and multiply in correct config part
for (size_t pos = 0; pos < size(); ++pos)
Ax += Ab_(pos) * ConstDMap(x + D * keys_[pos]);
// Deal with noise properly, need to Double* whiten as we are dividing by variance
if (model_) {
model_->whitenInPlace(Ax);
model_->whitenInPlace(Ax);
}
// multiply with alpha
Ax *= alpha;
// Again iterate over all A matrices and insert Ai^e into y
for (size_t pos = 0; pos < size(); ++pos)
DMap(y + D * keys_[pos]) += Ab_(pos).transpose() * Ax;
}
/// Expose base class hessianDiagonal
virtual VectorValues hessianDiagonal() const {
return JacobianFactor::hessianDiagonal();
}
/// Raw memory access version of hessianDiagonal
void hessianDiagonal(double* d) const {
// Loop over all variables in the factor
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
// Get the diagonal block, and insert its diagonal
DVector dj;
for (size_t k = 0; k < D; ++k) {
if (model_) {
Vector column_k = Ab_(j).col(k);
column_k = model_->whiten(column_k);
dj(k) = dot(column_k, column_k);
} else {
dj(k) = Ab_(j).col(k).squaredNorm();
}
}
DMap(d + D * j) += dj;
}
}
/// Expose base class gradientAtZero
virtual VectorValues gradientAtZero() const {
return JacobianFactor::gradientAtZero();
}
/// Raw memory access version of gradientAtZero
void gradientAtZero(double* d) const {
// Get vector b not weighted
Vector b = getb();
// Whitening b
if (model_) {
b = model_->whiten(b);
b = model_->whiten(b);
}
// Just iterate over all A matrices
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
DVector dj;
// gradient -= A'*b/sigma^2
// Computing with each column
for (size_t k = 0; k < D; ++k) {
Vector column_k = Ab_(j).col(k);
dj(k) = -1.0 * dot(b, column_k);
}
DMap(d + D * j) += dj;
}
}
/**
* @brief double* Transpose Matrix-vector multiply, i.e. x += A'*e
* RAW memory access! Assumes keys start at 0 and go to M-1, and y is laid out that way
*/
void transposeMultiplyAdd(double alpha, const Vector& e, double* x) const {
Vector E = alpha * (model_ ? model_->whiten(e) : e);
// Just iterate over all A matrices and insert Ai^e into y
for (size_t pos = 0; pos < size(); ++pos)
DMap(x + D * keys_[pos]) += Ab_(pos).transpose() * E;
}
/**
* @brief double* Matrix-vector multiply, i.e. y = A*x
* RAW memory access! Assumes keys start at 0 and go to M-1, and x is laid out that way
*/
Vector operator*(const double* x) const {
Vector Ax = Vector::Zero(Ab_.rows());
if (empty())
return Ax;
// Just iterate over all A matrices and multiply in correct config part
for (size_t pos = 0; pos < size(); ++pos)
Ax += Ab_(pos) * ConstDMap(x + D * keys_[pos]);
return model_ ? model_->whiten(Ax) : Ax;
}
};
// end class RegularJacobianFactor
}// end namespace gtsam